Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Sistema de partículas no grafo completo com remoção ao pular

Mario Andres Estrada¹ CCEN-Universidade Federal de Pernambuco, Recife, PE

Resumo.

Estudamos um sistema de partículas no grafo completo, no qual cada partícula é retirada após visitar um vértice e/ou acordar uma partícula dormente se o vértice contiver uma. Esta é uma variação do modelo conhecido como modelo dos sapos com tempo de vida não geométrico. Consideramos que o processo começa com uma partícula ativa em um único vértice. Mostramos que a proporção de vértices visitados e que o tempo de absorção do processo convergem em probabilidade para zero quando a quantidade de vértices no grafo completo tende para infinito.

Palavras-chave. Modelo dos sapos, grafo completo, passeios aleatórios, modelo não markoviano.

1 Introdução

O modelo dos sapos é um modelo estocástico para a propagação de uma epidemia em um grafo, no qual uma partícula dormente passa a realizar um passeio aleatório simples e a acordar outras partículas, uma vez que se torna ativa. Estudamos uma versão do modelo dos sapos no grafo completo com N + 1 vértices, em que cada partícula ativa é removida ao pular e se o vértice escolhido por esta partícula tiver uma partícula dormente, ela é acordada e começa a realizar um passeio aleatório simples na estrutura geométrica, independente da trajetória realizada pela partícula anterior. Por simplicidade nos referiremos a este modelo pelo nome Pula-Morre. Este modelo foi introduzido pela primeira vez em \mathbb{Z} por Lebensztayn et al. [7], os autores consideraram que cada partícula ativa pode realizar L saltos para vértices escolhidos uniformemente ao acaso, ativando todas as partículas inativas que encontra ao longo do seu caminho. Se L = 1, o modelo dos autores coincide com nosso modelo. Estudamos o tempo em que todas as partículas se tornam inativas, denotado de tempo de absorção, como também a proporção de vértices visitados ao finalizar o grafo.

Os tempos aleatórios têm sido um dos focos no estudo do modelo dos sapos em diferentes estruturas geométricas e considerando diferentes tempos de vida das partículas. A variável aleatória tempo de acordar, é entendida como o tempo que lhe tomam a todas as partículas acordarem no grafo completo, ela tem sido amplamente estudada em Frieze and Grimmett [3], Doerr and Künnemann [2] e Pittel [8]. Em todas estas, considera-se que existe uma partícula em cada um dos vértices do grafo completo e como condição inicial considera-se que uma delas está ativa e as outras inativas. Se considera que as partículas ativas não são removidas em nenhum instante de tempo. Uma partícula se move seguindo a dinâmica de um passeio aleatório simples, ativando as demais ao visitar um vértice contendo uma partícula inativa. Os autores em Cartern et al. [1], fizeram um resumo dos resultados abordando este tema, além mostraram uma prova para o valor esperado do tempo de acordar ser $\Theta(\log n)$, em que n a quantidade de vértices no grafo completo.

¹marioestradalopez@gmail.com, mael1@de.ufpe.br

Neste trabalho mostramos que o tempo de absorção para o processo denominado Pula-Morre é de $o_p(N+1)$, entendendo $X_n = o_p(b_n)$ se para todo número real $\varepsilon > 0$ e para todo número real $\eta > 0$ existir um número inteiro positivo $n_0 = n_0(\varepsilon, \eta)$, tal que

$$\mathbb{P}\left(|X_n/b_n| \ge \varepsilon\right) < \eta, \quad \forall n \ge n_0.$$

2 Representação estocástica

O processo consiste em duas ações principais, pular e ocupar. Elas podem ser pensadas como operações que acontecem em instantes alternativos entre t e t + 1 mas só são registradas no tempo t+1, para qualquer instante de tempo. Assuma-se um grafo completo com N+1 vértices denotado por K_{N+1} e suponha que há dois tipos de partículas: partículas ativas e inativas. Como condição inicial assumimos que um vértice em K_{N+1} tem uma partícula ativa e as outras partículas estão inativas. Denota-se o número de partículas ativas no tempo t como A_t e o número de vértices não visitados como I_t . O número de vértices visitados no tempo t é denotado por $V_t = N + 1 - I_t$ e o número de partículas mortas até o instante $t \in D_t = V_t - A_t$. Conhecido o estado do processo (I_t, A_t, D_t) no tempo t, consideram-se duas variáveis aleatórias auxiliares, denotadas por X_{t+1} e Z_{t+1} .

Como foi dito na Introdução, consideramos uma única partícula ativa mas é possível também considerar k partículas ativas na condição inicial. A seguinte descrição considera $k \ge 1$, as partículas ativas pulam com probabilidade 1, tentando atingir um vértice não visitado, devido que no caso contrário o processo finalizaria. A dinâmica anteriormente citada pode ser descrita, no tempo t + 1, por: $Z_{t+1} \sim \text{Binomial } (A_t; \frac{I_t}{N})$. A geração de novas partículas vem determinada pelos vértices inativos que são visitados pelas partículas ativas. Para conhecer a quantidade de partículas novas no sistema no tempo t + 1, ao número de vértices não visitados no tempo anterior lhe subtraímos o número de vértices inativos no tempo t + 1. O número de vértices não visitados, no tempo t + 1, vem especificado por: $I_{t+1} \sim \text{EmpBox}(Z_{t+1}; I_t)$, para mais informação sobre EmpBox, veja-se Apêndice A. Descrevemos o processo como segue:

$$\begin{cases} I_{t+1} = I_t - Y_{t+1}. \\ A_{t+1} = Y_{t+1} & e \\ D_{t+1} = V_{t+1} - A_{t+1} = N + 1 - I_{t+1} - A_{t+1} = N + 1 - I_t. \end{cases}$$

Onde Y_{t+1} é a variável aleatória que representa o número de vértices ocupados no tempo t+1.

3 Resultados principais

3.1 Proporção de vértices visitados

Seja $\mathcal{G}_t = \sigma(\{(I_u, A_u, D_u), 0 \le u \le t\})$ a sigma álgebra gerada pelo vetor aleatório até o tempo t, representando a informação acumulada depois de t passos do modelo dos sapos com o segundo mecanismo de remoção. Redefinimos neste capítulo o valor esperado, a variância e a covariância condicionada à filtração \mathcal{G}_t como: $\mathbb{E}(\cdot) = E(\cdot|\mathcal{G}_t) \in \mathbb{V}(\cdot) = Var(\cdot|\mathcal{G}_t)$.

Lemma 3.1. As expressões para os valores esperados condicionados a \mathcal{G}_t para I_{t+1} , $A_{t+1} \in D_{t+1}$

 $s \tilde{a} o$:

$$\mathbb{E}(I_{t+1}) = I_t \left(1 - \frac{1}{N}\right)^{A_t},$$
$$\mathbb{E}(A_{t+1}) = I_t \left[1 - \left(1 - \frac{1}{N}\right)^{A_t}\right],$$
$$\mathbb{E}(D_{t+1}) = N + 1 - I_t,$$

respectivamente.

Demonstração. Usando a expressão (1) no Apêndice A, calculamos:

$$\mathbb{E}(I_{t+1}|Z_{t+1}) = E(I_{t+1}|Z_{t+1}, \mathcal{G}_t)$$
$$= I_t \left(1 - \frac{1}{I_t}\right)^{Z_{t+1}}$$

O que implica, tomando novamente valor esperado, que

$$\begin{split} \mathbb{E}(I_{t+1}) &= E\left(E(I_{t+1}|Z_{t+1},\mathcal{G}_t)|\mathcal{G}_t\right) \\ &= E\left(\left.I_t\left(1-\frac{1}{I_t}\right)^{Z_{t+1}}\right|\mathcal{G}_t\right) \\ &= I_t\left(1-\frac{I_t}{N}\left(1-1+\frac{1}{I_t}\right)\right)^{A_t} \\ &= I_t\left(1-\frac{1}{N}\right)^{A_t}. \end{split}$$

• Valor esperado A_{t+1} :

$$\mathbb{E}(A_{t+1}) = \mathbb{E}(I_t) - \mathbb{E}(I_{t+1}),$$
$$= I_t - I_t \left(1 - \frac{1}{N}\right)^{A_t}$$
$$= I_t \left[1 - \left(1 - \frac{1}{N}\right)^{A_t}\right]$$

• Valor esperado D_{t+1} :

$$\mathbb{E}(D_{t+1}) = N + 1 - I_t.$$

Usando o Lema 3.1 e os momentos no Apêndice A, temos que

Lemma 3.2. As expressões para a variância condicionada a \mathcal{G}_t de I_{t+1} , D_{t+1} e A_{t+1} são:

$$\mathbb{V}(I_{t+1}) = I_t \left\{ (I_t - 1) \left(1 - \frac{2}{N} \right)^{A_t} - I_t \left(1 - \frac{1}{N} \right)^{2A_t} + \left(1 - \frac{1}{N} \right)^{A_t} \right\},\$$

$$\mathbb{V}(D_{t+1}) = 0 \ e$$

$$\mathbb{V}(A_{t+1}) = \mathbb{V}(I_{t+1}),$$

respectivamente.

Demonstração. Tendo como objetivo aplicar a fórmula da decomposição da variância, calculem-se

• Variância de I_{t+1} : Temos que $\mathbb{E}(I_{t+1}|Z_{t+1}) = I_t \left(\frac{I_t-1}{I_t}\right)^{Z_{t+1}}$ e por (2) do Apêndice A, temos que $Var(I_{t+1}|Z_{t+1},\mathcal{G}_t) = I_t(I_t-1)\left(\frac{I_t-2}{I_t}\right)^{Z_{t+1}} + I_t\left(\frac{I_t-1}{I_t}\right)^{Z_{t+1}} - I_t^2\left(\frac{I_t-1}{I_t}\right)^{2Z_{t+1}}$, em consequência podemos concluir que:

$$\begin{split} \mathbb{V}(I_{t+1}) &= I_t(I_t - 1) \left(1 - \frac{2}{N} \right)^{A_t} + I_t \left(1 - \frac{1}{N} \right)^{A_t} - I_t^2 E\left(\left(\frac{I_t - 1}{I_t} \right)^{2Z_{t+1}} \middle| \mathcal{G}_t \right) + \\ &+ I_t^2 E\left(\left(\frac{I_t - 1}{I_t} \right)^{2Z_{t+1}} \middle| \mathcal{G}_t \right) - I_t^2 \left(1 - \frac{1}{N} \right)^{2A_t} , \\ &= I_t(I_t - 1) \left(1 - \frac{2}{N} \right)^{A_t} + I_t \left(1 - \frac{1}{N} \right)^{A_t} - I_t^2 \left(1 - \frac{1}{N} \right)^{2A_t} . \end{split}$$

• Variância de D_{t+1} e A_{t+1} :

$$\mathbb{V}(D_{t+1}) = \mathbb{V}(N+1-I_t),$$

= 0

Por outro lado, temos que $A_{t+1} = Y_{t+1} = I_t - I_{t+1}$, em consequência temos que: $\mathbb{V}(A_{t+1}) = \mathbb{V}(I_{t+1})$.

Consideramos o seguinte sistema dinâmico a tempo discreto, $\varrho_t^{(N)} = \left(\tilde{\iota}_t^{(N)}, \tilde{\alpha}_t^{(N)}, \tilde{\delta}_t^{(N)}\right)$, em que

$$\begin{pmatrix}
\tilde{\iota}_{t+1} = \tilde{\iota}_t e^{-\tilde{\alpha}_t}, \\
\tilde{\iota}_{t+1} = \tilde{\iota}_t e^{\tilde{\alpha}_t}, \\
\tilde{\iota}_{t+1} = \tilde{\iota}_t e^{-\tilde{\alpha}_t}, \\
\tilde{\iota}_{t+1} =$$

$$\begin{cases} \tilde{\alpha}_{t+1} = \tilde{\iota}_t \left(1 - e^{-\alpha_t} \right), \\ \tilde{\delta}_{t+1} = 1 - \tilde{\iota}_t, \end{cases}$$
(1b)
(1c)

$$\tilde{\iota}_0 = \frac{N}{N+1}, \ \tilde{\alpha}_0 = \frac{1}{N+1}, \ \tilde{\delta}_0 = 0.$$

As técnicas usadas em Lebensztayn and Estrada [6] mostram que o sistema acima se aproxima em probabilidade a sua contraparte estocástica $\eta_t := (I_t, A_t, D_t)/(N+1)$ a medida que N vai para infinito para todo t. Isto é, $\eta_t - \varrho t \xrightarrow{p} 0$ para todo t quando $N \to \infty$, onde \xrightarrow{p} denota convergência em probabilidade.

Figura 1: Gráficos para o sistema dinâmico ρ_t para N = 10000.

Observação 3.1. O sistema acima em (1) exibe uma única solução em $\tilde{\iota}_{\infty} = 1$ quando $t \to \infty$ e $N \to \infty$. Podemos observar o anteriormente descrito na Figura 1a, em que o sistema se estabiliza perto de um ponto aproximado a 1 para N = 10000.

Defina $\lim_{t\to\infty} V_t = V_{\infty}$ e $\lim_{t\to\infty} I_t = I_{\infty}$. Devido que o sistema exibe uma única solução, $\tilde{\iota}_{\infty} = 1$, concluímos que $\frac{I_{\infty}}{N+1} \xrightarrow{p} 1$ quando $N \to \infty$. Finalmente, já que $\frac{V_t}{N+1} = 1 - \frac{I_t}{N+1}$ para todo t, concluímos que $\frac{V_{\infty}}{N+1} \xrightarrow{p} 0$ quando $N \to \infty$.

O resultado anterior, também é valido considerando k partículas em um dos vértices do grafo completo como condição inicial.

3.2 Tempo de absorção

A seguinte análise é considerando k=1. Defina o tempo de parada do processo, que é o tempo em que é absorvido o processo, como

$$T = \min\{t : A_t = 0\}.$$

Pelo Lema 3.1, temos que $\mathbb{E}(I_{t+1}) = I_t \left(1 - \frac{1}{N}\right)$. Defina $m_t = I_{t-1} \left(1 - \frac{1}{N}\right)^{-t+1}$, a expressão anterior é um martingal, isto é, $\mathbb{E}(m_t) = m_{t-1}$.

Consideremos a seguinte relação

$$\begin{split} P\left(\left|\left(\frac{N}{N-1}\right)^T \frac{I_T}{N+1} - \frac{I_0}{N+1}\right| > \varepsilon\right) &\leq \frac{Var\left(\left(\frac{N}{N-1}\right)^T I_T\right)}{(N+1)^2 \varepsilon^2} \\ &\leq \frac{\left(\frac{N}{N-1}\right)^{2N} Var\left(I_T\right)}{(N+1)^2 \varepsilon^2}. \end{split}$$

Aplicando a Lei da Variância Total, os Lema 3.1, Lema 3.2 e o Teorema da convergência dominada, obtemos que:

$$\frac{Var(I_T)}{(N+1)^2} = \frac{E(\mathbb{V}(I_T)) + Var(\mathbb{E}(I_T))}{(N+1)^2} \to 0 \quad \text{quando } N \to \infty.$$

Seja $f_N(x) := \left(\frac{N}{N-1}\right)^x (1-x) - \frac{N}{N+1}$. Notando que $I_t = A_0 + I_0 - T$, concluímos que

$$\lim_{N \to \infty} \mathbb{P}\left(\frac{T}{N+1} \in \left(f_N^{-1}(-\varepsilon), f_N^{-1}(\varepsilon)\right)\right) = 1$$

Implicando

$$\frac{T}{N+1} \xrightarrow{p} 0, \quad \text{ quando } N \to \infty.$$

4 Estudos de simulação

Nesta Seção, ilustraremos por meio de estudos de simulação, o resultado obtido na Seção 3.2. Na Figura 2 observamos 3000 realizações do tempo de absorção divido por N + 1 representados pelos pontos azuis, em que o eixo x representa o grau do grafo completo. Observamos que a medida que N aumenta, as realizações vão se concentrando numa vizinhança de zero. As funções $f_N^{-1}(-\varepsilon)$ e $f_N^{-1}(\varepsilon)$ são representadas pelos pontos roxos, escolhendo $\varepsilon = \frac{1}{N}$.

Figura 2: 3000 realizações para o tempo de absorção divido por N + 1.

Na Figura 3 observamos 3000 realizações para o tempo de absorção representadas pelos pontos da cor magenta. Nessa figura, são representadas três funções $N^{2/3}$, $\sqrt{N} e N^{1/3}$. A Figura 3 sugere que existe uma relação entre $T e \sqrt{N}$. O autor em Harris [4] trabalhou com um mapeamento aleatório, cuja descrição coincide com o modelo Pula-Morre com uma partícula ativa, as abordagens usadas no artigo mostraram que o mapeamento com m imagens sucessivas distintas tem valor esperado assintótico $\frac{1}{4}\sqrt{2\pi N}$. O anterior, nos motiva a continuar trabalhando numa caraterização do tempo de absorção para k > 1.

Figura 3: 3000 realizações para o tempo de absorção.

5 Conclusões

Foi mostrado que a proporção de vértices para o modelo Pula Morre converge para zero em probabilidade, usando a técnica planteada em Lebensztayn and Estrada [6]. Por sua vez, foram usadas técnicas de martingais, inspiradas no trabalho Sudbury [9], para mostrar que o tempo de absorção é $o_p(N+1)$.

6 Agradecimentos

Agradeço à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Processo No. 88887.351976/2019-00 do Programa Nacional de Pós-Doutorado) e à Fundação de Amparo à

Ciência e Tecnologia de Pernambuco—FACEPE (Processo No. BCT - 0217-1.02/19). Agradeço a meus supervisores Pablo Rodriguez e ao Alex Dias Ramos, pela supervisão e apoio. Agradeço também ao revisor anônimo pelas valiosas sugestões que ajudaram a melhorar o texto.

A Distribuição de urnas vazias

Nesta seção apresentaremos o clássico problema de ocupação, fazendo referência ao leitor interessado a Johnson [5, Seção 4 do Capítulo 10] para mais detalhes. Consideramos uma distribuição aleatória de b bolas em c caixas, de forma que são colocadas independentemente e uniformemente nas caixas. Seja X a variável aleatória que denota o número de caixas vazias depois que as bolas tenham sido distribuídas. Então a função de massa de probabilidade de X é dada por

$$P(X=x) = \sum_{i=0}^{c-x} (-1)^i \binom{x+i}{i} \binom{c}{x+i} \left(1 - \frac{x+i}{c}\right)^b, \ x = 0, 1, \dots, c.$$

Escrevemos $X \sim \text{EmpBox}(b, c)$. Na sequência, usaremos as fórmulas para a esperança e a variância de X, que são dadas por

$$\mathbb{E}(X) = c \left(\frac{c-1}{c}\right)^b, \quad e \tag{1}$$

$$\operatorname{Var}(X) = c \left(c - 1\right) \left(\frac{c - 2}{c}\right)^{b} + c \left(\frac{c - 1}{c}\right)^{b} - c^{2} \left(\frac{c - 1}{c}\right)^{2b}.$$
 (2)

Referências

- Nikki Cartern, Brittany Dygert, Matthew Junge, Stephen Lacina, Collin Litterell, Austin Stromme, and Andrew You. Frog model wakeup time on the complete graph, 2015.
- [2] Benjamin Doerr and Marvin Künnemann. Tight analysis of randomized rumor spreading in complete graphs. In *Proceedings of the Meeting on Analytic Algorithmics and Combinatorics*, page 82–91, USA, 2014. Society for Industrial and Applied Mathematics.
- [3] A.M. Frieze and G.R. Grimmett. The shortest-path problem for graphs with random arclengths. Discrete Applied Mathematics, 10(1):57 – 77, 1985. ISSN 0166-218X.
- Bernard Harris. Probability distributions related to random mappings. Ann. Math. Statist., 31(4):1045–1062, 12 1960. doi: 10.1214/aoms/1177705677.
- [5] Johnson, N.; Kotz, S.; Kemp, A. Univariate discrete distributions. [S.l.]: John Wiley & Sons, 1992. (Wiley series in probability and mathematical statistics: Probability and mathematical statistics).
- [6] Elcio Lebensztayn and Mario Andrés Estrada. Laws of large numbers for the frog model on the complete graph. Journal of Mathematical Physics, 60(12):123302, 2019.
- [7] Elcio Lebensztayn, Fábio Prates Machado, and Mauricio Zuluaga Martinez. Random walks systems with killing on Z. *Stochastics*, 80(5):451–457, 2008. doi: 10.1080/17442500701748609.
- Boris Pittel. On spreading a rumor. SIAM Journal on Applied Mathematics, 47(1):213–223, 1987. ISSN 00361399.
- [9] Aidan Sudbury. The proportion of the population never hearing a rumour. Journal of Applied Probability, 22(2):443-446, 1985. doi: 10.2307/3213787.