Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Modelagem Fracionária para Dinâmica Neural

Jackson Ricardo Pereira de Lucena Silva¹ PPGMC FURG, Rio Grande, RS e IFC, Concórdia, SC Adriano De Cezaro² IMEF/FURG, Rio Grande, RS

1 Resumo

Podemos dizer que o processamento de informações é um fenômeno biológico do cérebro, que acontece graças a química neural. O entendimento de tal fenômeno, de sua complexidade e importância levou a formulação de redes artificiais que simulam o processamento cerebral, as chamadas Redes Neurais Artificais (RNA) [3]. Uma RNA possui um sistema que permite estabelecer uma relação entre entradas e saídas inspiradas no sistema nervoso, através de capacitores e resistores, onde as informações são processadas em paralelo, com possibilidade de aprendizado e distribuído por unidades de processamento. Essas unidades são dispostas em uma ou mais camadas e interligadas por um certo número de conexões (sinapses), normalmente unidirecionais [3]. À mesma maneira que o cérebro, as RNA são capazes de aprender por meio de exemplos, generalizando a informação armazenada e reconhecendo padrões, tornando-se uma importante ferramenta na área de aprendizado de máquina. Há muitos modelos diferentes de RNA, cada qual baseado em diferentes metodologias e aplicado para fins específicos [3].

Nesta contribuição, nos propomos a estudar uma generalização do modelo proposto por Hopfield [4], em que os capacitores e resistores correspondem a materiais que conservam memória ou propriedades hereditárias, e.g [1, 2, 7] e referências, composta por uma uma rede neural autoassociativa determinada pela dinâmica de ordem multi-fracionária,

$${}^{C}D_{t}^{\alpha}\vec{u}(t) = -A\vec{u}(t) + W\vec{F}(\vec{u}(t)) + \vec{I}(t)$$
(1)

onde ${}^{C}D^{\alpha}$ e A são matrizes diagonais, cujos coeficientes não nulos representam, respectivamente, as entradas derivadas de Caputo [8] de ordem $\alpha_j \in]0,1]$, denotadas por ${}^{C}D^{\alpha_j}$ para $j = 1, \dots, n$ e elementos positivos $a_i > 0$ que correspondem a taxa de carregamento do neurônio. O vetor $\vec{u}(t) = [u_1(t), u_2(t), ..., u_n(t)]^T \in \mathbb{R}^n$ é o vetor de estado da i-ésima unidade no tempo t da rede neural, $W_{n \times n}$ é a matriz que contêm como entradas $(w_i j)$ os pesos e conexão do j-ésimo neurônio no i-ésimo neurônio, $\vec{F}(\vec{u}(t)) = [f_1(u_1(t)), f_2(u_2(t)), ..., f_n(u_n(t))]^T$ é a função de ativação dos neurônios e $\vec{I}(t) = [I_1(t), I_2(t), ..., I_n(t)]^T \in \mathbb{R}^n$ é o vetor de entrada externa.

Para o caso em que $\alpha_j = \alpha \in]0, 1]$ para todo $j = 1, \dots, n$, resultados de estabilidade e controlabilidade forma provados em [6] quando para \vec{F} linear, em [7] os autores exploram as consequências da dinâmica com oscilações não amortecidas e em [5] foi proposto o estudo de bifurcações e caos. Tais resultados para o modelo (1) é fruto de trabalhos futuros.

Nesta contribuição analisaremos as consequências das diferentes escolhas de $\alpha_j \in [0, 1]$ na dinâmica do modelo (1). A Figura 1 apresenta a solução do sistema (1) para diferentes escolhas

¹jackson.silva@ifc.edu.br

 $^{^{2}}$ decezaromtm@gmail.com

2

de $\alpha_j \in]0,1]$ (a saber, $\alpha_1 = 0.9, \alpha_2 = 0.8, \alpha_3 = 0.7$; ou $\alpha_1 = \alpha_2 = \alpha_3 = 0.9$ ou $\alpha_1 = \alpha_2 = \alpha_3 = 1$), para n = 3 neurônios, $A = diag(-5, -7, -5), W = [2, 1, -1.5; -1, -2.5, 3; 2, 1, -1.5]_{3\times 3}, \vec{F}(\vec{u}(t)) = (\operatorname{sen}(u_1), \operatorname{sen}(u_2), \operatorname{sen}(u_3))^T$ e $\vec{I}(t) = \left(\frac{1-t^2}{1+t^2}, \operatorname{exp}(-t), \operatorname{sgn}(t-5)\right)^T$.

Figura 1: Solução para diferentes valores de $\alpha_j \in [0,1]$ com condição inicial $\vec{u}(0) = (-1,1,-1)^T$.

Percebe-se que, independentemente das escolhas de $\alpha_j \in [0, 1]$, o sistema (1) é assimptoticamente globalmente estável. Por outro lado, em alguns casos que a estabilidade é atingida mais rápido (caso $\alpha_j = 0.9$).

Referências

- Boroomand, A.; Menhaj, M. B. Fractional-Order Hopfield Neural Networks, Advances in Neuro-Information Processing, p. 883-890, 2008. DOI: 10.1007/9783642024900108.
- [2] Chen, L. P.; Chai, Y. R. C.; WU, T.D; Ma, H. Z. Dynamic analysis of a class of fractional-order neural networks with delay. *Neurocomputing* V. 111, 190–194, 2013. DOI: 10.1016/j.neucom.2012.11.034
- [3] Haykin, S. Neural Networks and Learning Machines. 3. ed. New York: Pearson, 2009.
- [4] Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, V. 79, n. 8, p. 2554-2558, 1982. DOI: 10.1073/pnas.79.8.2554.
- [5] Leung, A. Y. T.; Yang, H. X.; Zhu, P. Bifurcation of a Duffing oscillator having nonlinear fractional derivative feedback. *International Journal of Bifurcation and Chaos*, v. 24, n. 03, p. 1450028, 2014. DOI: 10.1142/S021812741450028X.
- [6] Lim, Y. H.; Oh, K. K.; Ahn, H.S. Stability and stabilization of fractional-order linear systems subject to input saturation. *IEEE Transactions on Automatic Control*, v. 58, n. 4, p. 1062-1067, 2012. DOI: 10.1016/j.ifacol.2017.08.2055.
- [7] Tavazoei, M. S.; Haeri, M.; Siami, M.; Bolouki, S. Maximum number of frequencies in oscillations generated by fractional order LTI systems. *IEEE Transactions on Signal Processing*, v. 58, n. 8, p. 4003-4012, 2010. DOI: 10.1109/TSP.2010.2049568.
- [8] Teodoro, G. S.; Oliveira, D. S.; Oliveira, E. C. Sobre derivadas fracionárias. Revista Brasileira de Ensino de Física, v. 40, n. 2, 2018. DOI: 10.1590/1806-9126-rbef-2017-0213.