Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Reticulados e Empacotamentos Esféricos

Lídia Charra Alves¹ Universidade Federal do Espírito Santo, Alegre, ES Eleonesio Strey² Universidade Federal do Espírito Santo, Alegre, ES

Um reticulado Λ é um subgrupo aditivo discreto de \mathbb{R}^n . Equivalentemente, $\{\mathbf{0}\} \neq \Lambda \subseteq \mathbb{R}^n$ é um reticulado se, e somente se, existem vetores $\mathbf{b}_1, \dots, \mathbf{b}_m \in \mathbb{R}^n$ linearmente independentes de modo que

$$\Lambda = \{\alpha_1 \mathbf{b}_1 + \dots + \alpha_m \mathbf{b}_m; \ \alpha_1, \dots, \alpha_m \in \mathbb{Z}\},\$$

isto é, Λ consiste de todas as combinações lineares inteiras de $\mathbf{b}_1, \ldots, \mathbf{b}_m$. O conjunto $\mathbf{b}_1, \ldots, \mathbf{b}_m$ é dito uma base de Λ e o número m é denominado o posto de Λ . Se m=n dizemos que Λ tem posto completo. A matriz M cujas linhas são os vetores $\mathbf{b}_1, \ldots, \mathbf{b}_m$ é dita uma matriz geradora de Λ . O determinante de Λ é definido como det $(\Lambda) = \det(MM^t)$ e este é um invariante por mudança de base. Denotamos por $span(M) = \{\mathbf{u}M; \mathbf{u} \in \mathbb{R}^n\}$ o espaço vetorial gerado pelas linhas da matriz M. O reticulado dual de $\Lambda = \Lambda(M)$, denotado por Λ^* , é definido como

$$\Lambda^* = \{ \mathbf{v} \in span(M); \ \langle \mathbf{u}, \mathbf{v} \rangle \in \mathbb{Z}, \forall \mathbf{u} \in \Lambda \},$$

em que \langle , \rangle representa o produto interno canônico em \mathbb{R}^n . Temos que M é uma matriz geradora de Λ se, e somente se, $(MM^t)^{-1}M$ (a pseudo-inversa de M^t) é uma matriz geradora de Λ^* . O dual de $k\Lambda^*$ é $(1/k)\Lambda^*$, para todo $0 \neq k \in \mathbb{R}$. Além disso, para qualquer reticulado Λ , tem-se $(\Lambda^*)^* = \Lambda$.

Uma região fundamental F de um reticulado $\Lambda = \Lambda(M) \subseteq \mathbb{R}^n$ de posto m é qualquer subconjunto de span(M) que ladrilha span(M) por translações $\mathbf{v} + F$ com $\mathbf{v} \in \Lambda$, isto é, $span(M) = \bigcup_{\mathbf{v} \in \Lambda} (\mathbf{v} + F)$ e dois ladrilhos $\mathbf{v}_1 + F$ e $\mathbf{v}_2 + F$, com $\mathbf{v}_1, \mathbf{v}_2 \in \Lambda$ e $\mathbf{v}_1 \neq \mathbf{v}_2$, ou não se interceptam ou se interceptam apenas nos bordos. Duas regiões fundamentais F_1 e F_2 de um mesmo reticulado Λ de posto m possuem o mesmo volume (m-dimensional). O volume é definido como $vol(\Lambda) = \sqrt{\det \Lambda}$, este valor corresponde ao volume euclidiano do paralelotopo fundamental $P_\beta = \{\sum_{i=1}^m \alpha_i \mathbf{b}_i; \ 0 \leq \alpha_i < 1, \ \forall i \in \{1, \dots, m\}\}$ associado à base $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_m\}$ de Λ . Qualquer paralelotopo fundamental de um reticulado Λ é uma região fundamental de Λ . Dado $\mathbf{v} \in \Lambda$, a região de Voronoi de \mathbf{v} é definida como

$$\mathcal{R}(\mathbf{v}) = \{ \mathbf{x} \in span(M); \ \|\mathbf{x} - \mathbf{v}\|_2 \le \|\mathbf{x} - \mathbf{u}\|_2, \ \forall \mathbf{u} \in \Lambda \}.$$

A região $\mathcal{R}_2(\mathbf{0})$ é uma região fundamental de Λ , a qual é também denotada por $\mathcal{R}_2(\Lambda)$ e conhecida como região de Voronoi de Λ .

Um empacotamento esférico no \mathbb{R}^n é uma coleção de esferas/bolas no \mathbb{R}^n , todas de mesmo raio, de modo que quaisquer duas esferas/bolas ou não se interceptam ou se interceptam apenas no bordo. Um empacotamento reticulado no \mathbb{R}^n é um empacotamento esférico tal que o conjunto dos centros das esferas/bolas formam um reticulado. O raio de empacotamento ρ de um reticulado Λ

¹lidia.charra.alves@gmail.com

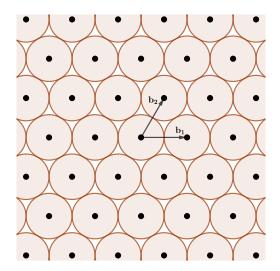
²eleonesio.strey@ufes.br

2

não nulo é o maior número real r tal que $\Lambda + B[\mathbf{0}, r]$ é um empacotamento reticulado. A densidade de empacotamento de um reticulado Λ de posto m é dada por

$$\Delta(\Lambda) = \frac{\text{volume } m\text{-dimensional de uma bola de raio } \rho}{\text{volume da região de Voronoi de } \Lambda}.$$

Nas Figuras 1 e 2 estão ilustrados os empacotamentos esféricos (de raio máximo) do reticulado hexagonal (reticulado gerado por $\mathbf{b}_1 = (1,0)$ e $\mathbf{b}_2 = (1/2,\sqrt{3}/2)$) e do reticulado \mathbb{Z}^2 (reticulado gerado por $\mathbf{b}_1 = (1,0)$ e $\mathbf{b}_2 = (0,1)$), respectivamente.



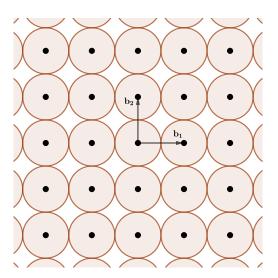


Figura 1:
$$\Delta = \frac{\pi\sqrt{3}}{6} \approx 0,90689$$

Figura 2: $\Delta = \frac{\pi}{4} \approx 0,78539$

No contexto de códigos corretores de erros, a densidade de empacotamento está relacionada com a capacidade de correção de erros, quanto maior for a densidade do reticulado maior é a capacidade de correção de erros. Um problema clássico é a busca por reticulados n-dimensionais de densidade máxima. São poucas as dimensões em que a densidade máxima é conhecida. Mais precisamente, só são conhecidos reticulados de densidade máxima e a densidade máxima nas dimensões de 1 até 8 e na dimensão 24. O reticulado hexagonal é um reticulado de densidade máxima. Outro problema clássico relacionado aos empacotamentos reticulados é o problema do número de vizinhos (kissing number). Para cada $\mathbf{x} \in \Lambda$, o número de vetores $\mathbf{y} \in \Lambda$ tais que $\mathbf{x} \neq \mathbf{y}$ e a distância $d(x,y) = \|\mathbf{x} - \mathbf{y}\|_2$ é mínima é denominado o numero de vizinhos de \mathbf{x} . Elementos distintos de um reticulado Λ possuem o número de vizinhos. Este número é denotado por τ e chamado de numero de vizinhos de Λ . Por exemplo, o número de vizinhos do reticulado hexagonal é $\tau = 6$.

Agradecimentos

Os autores agradecem o apoio financeiro da UFES.

Referências

[1] Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices and Groups. 3a. edição. Springer Verlag, New York, 1998.

010287-2 © 2021 SBMAC