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Abstract. We consider a transmission problem for a string composed by two components: one of
them is a viscoelastic material (with viscoelasticity of memory type), and the other is an elastic
material (without dissipation effective over this component). Additionally, we consider that in one
end is attached a tip load. The main result is that the model is exponentially stable if and only if
the memory effect is effective over the string. When there is no memory effect, then there is a lack
of exponential stability, but the tip load produces a polynomial rate of decay. That is, the tip load
is not strong enough to stabilize exponentially the system, but produces a polynomial rate of decay.
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1 Introduction

We consider the transmission problem for the damped vibrations of a string, whose left end
is rigidly attached and in the other end has an attached hollow-tip body that contains granular
material (Fig.1). The string is composed by two components: one of them is a viscoelastic material
(with viscoelasticity of memory type) and the other is an elastic material (without dissipation
effective over this component).

Figure 1: String with Tip Load.
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More precisely, let us denote by U the displacement of the string. That is

U(x) =

{
u(x), x ∈ ]0, l0[

v(x), x ∈ ]l0, l[

where l is the length of the string and l0 is the transmission point. The model that we consider in
this paper is written as follows.

ρ1utt − α1uxx +

∫ t

0

g(t− s)uxx(·, s)ds = 0 in ]0, l0[ × ]0,+∞[ (1)

ρ2vtt − α2vxx = 0 in ]l0, l[ × ]0,+∞[. (2)

Here, g : [0,+∞)→ R be the relaxation function, and α1, α2, ρ1, ρ2 are positive constants that
reflect physical properties of the string. The boundary conditions are given by

u(0, t) = 0, v(l, t) = w(t), ∀ t ≥ 0, (3)

and the transmission conditions are given by

u(l0, t) = v(l0, t), α1ux(l0, t)−
∫ t

0

g(t− s)ux(l0, s)ds = α2vx(l0, t), ∀ t ≥ 0. (4)

We turn to model the motion of the right end with the attached tip body. We assume that
the container is rigidly attached to the end x = l, and that the container and its contents have
mass m and a center of mass O′ located at distance d from the end of the string. We assume that
the damping effect of the internal granular material can be represented by damping coefficient
γ1, whose precise contributions are described by ρ3wtt + γ1wt + γ2w. Here, the first term is the
contribution of the inertia of the container, and the second term represents the damping that the
granular material provides, which is assumed to be proportional to the velocity, and so γ1 is the
damping coefficient. Thus, the force balance at the end x = l is

ρ3wtt + γ1wt + γ2w + α2vx(l, .) = 0 in ]0,+∞[, (5)

where the parameters γ1 and γ2 are non-negative constants. Finally, the initial data are given by

u(0)=u0, ut(0)=u1 in ]0, l0[, v(0)=v0, vt(0)=v1 in ]l0, l[, w(0)=w0 ∈ C, wt(0)=w1 ∈ C. (6)

Here, we assume the following hypotheses on the relaxation function g

g(t) ≥ 0, ∀t ≥ 0, and g > 0 almost everywhere in [0,+∞[; (7)

∃ k1, k2 > 0 : −k1g(t) ≤ g′(t) ≤ −k2g(t), ∀t ≥ 0; (8)

0 < α := α1 −
∫ ∞

0

g(s)ds. (9)

Concerning models of motion with the attached tip body, Andrews and Shillor [1] establish the
existence and uniqueness of the model and showed the exponential energy decay of the solution
provided and extra damping term is present. See also the work of Feireisl and O’Dowd [7] where
is showed, for an hybrid system composed of a cable with masses at both end, the strong stability
for a nonlinear and nonmonotone feedback law applied at one end.
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2 Existence and Uniqueness of Solutions

To use the semigroup approach we need to rewrite the problem as an autonomous system.
For this reason we introduce the history problem, obtained by replacing the equation (1) by the
following history equation

ρ1utt − α1uxx +

∫ t

−∞
g(t− s)uxx(., s)ds = 0 in ]0, l0[ × ]0,+∞[.

Following the ideas of Dafermos [3], [4] and Fabrizio [6], we introduce the notation η(x, t, s) :=
u(x, t)− u(x, t− s), with s ∈ [0,+∞); whence we consider the system

ρ1utt − αuxx −
∫ ∞

0

g(s)ηxx(s)ds = 0 in ]0, l0[ × ]0,+∞[ (10)

ρ2vtt − α2vxx = 0 in ]l0, l[ × ]0,+∞[ (11)

ηt + ηs − ut = 0 in ]0, l0[ × ]0,+∞[ × ]0,+∞[. (12)

with u, v and w, satisfying (5) and the initial conditions (6) and η verifying

η(x, 0, s) = η0(x, s) =: u0(x)− u0(x,−s), ∀ (x, s) ∈ ]0, l0[ × ]0,+∞[, (13)

with boundary conditions are given by

η(x, t, 0) = 0, ∀ (x, t) ∈ ]0, l0[ × ]0,+∞[, η(0, t, s) = 0, ∀ (t, s) ∈ ]0,+∞[ × ]0,+∞[. (14)

The transmission conditions now are given by

u(l0, t) = v(l0, t), αux(l0, t) +

∫ ∞
0

g(s)ηx(l0, t, s)ds = α2vx(l0, t), ∀ t ≥ 0. (15)

We define the total energy of the system as

E(t)=
1

2

{∫ l0

0

[
ρ1|ut|2+α|ux|2+

∫ ∞
0

g(s)|ηx(s)|2ds
]
dx+

∫ l

l0

[
ρ2|vt|2+α2|vx|2

]
dx+ρ3|wt|2+γ2|w|2

}

Let us introduce the following spaces:

Hm := Hm(0, l0)×Hm(l0, l), m ∈ N;

Hm∗ := {(u, v) ∈ Hm; u(0) = 0, u(l0) = v(l0)} , m ∈ N;

L2 := L2(0, l0)× L2(l0, l);

Hm
∗ (0, l0) := {f ∈ Hm(0, l0); f(0) = 0} , m ∈ N;

L2
g :=

{
ϕ : R+ → H1

∗ (0, l0);

∫ ∞
0

g(s)

∫ l0

0

|ϕx(s)|2dxds <∞

}
.

We recall that L2
g is a Hilbert space when endowed with the inner product given by

〈ϕ,ψ〉L2
g

=

∫ ∞
0

g(s)

∫ l0

0

ϕx(s)ψx(s)dxds.
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We consider the phase space H :=
{

(u, v, U, V, η, w,W )T ∈ H1
∗ × L2 × L2

g × C2; v(l) = w
}

. Note
that the space H is a Hilbert space with the norm

‖U‖2H=α‖ux‖2L2(0,l0)
+ α2‖vx‖2L2(0,l0)

+ ρ1‖U‖2L2(0,l0)
+ ρ2‖V ‖2L2(0,l0)

+ ‖η‖2
L2
g
+ γ2|w|2+ ρ3|W |2 (16)

where U = (u, v, U, V, η, w,W )T ∈ H.
Let us introduce the linear unbounded operator A in H as follows:

A U =



U

V

α

ρ1
uxx +

1

ρ1

∫ ∞
0

g(s)ηxx(s)ds

α2

ρ2
vxx

U − ηs
W

−γ1

ρ3
W − γ2

ρ3
w − α2

ρ3
vx(l)


with domain

D(A) =


U = (u, v, U, V, η, w,W )T ∈ H;

(
αu+

∫ ∞
0

g(s)η(s)ds, v

)
∈ H2, (U, V ) ∈ H1

∗,

V (l) = W, η|s=0 = 0, ηs ∈ L2
g, αux(l0) +

∫ ∞
0

g(s)ηx(l0, s)ds = α2vx(l0)

 .

Using the hypotheses on g, a direct computation yields

Re 〈A U ,U〉 = −γ1|W |2 +
1

2

∫ l0

0

∫ ∞
0

g′(s)|ηx(s)|2dsdx ≤ 0,

which means that A is a dissipative operator. The system (10)-(15) is equivalent to

Ut = A U , U(0) = U0; (17)

where U(t) = (u(t), v(t), U(t), V (t), η(t), w(t),W (t))T and U0 = (u0, v0, u1, v1, η0, w0, w1)T .

Under this conditions, we have

Teorema 2.1. The operator A is the infinitesimal generator of a C0-semigroup of contractions
(S(t))t≥0 on H. Thus, for any initial data U0 ∈ H, the problem (17) has a unique weak (mild)
solution

U ∈ C0([0,∞[ ,H).

Moreover, if U0 ∈ D(A), then U is a strong solution of (17), that is

U ∈ C1([0,∞[ ,H) ∩ C0([0,∞[ , D(A)).

Proof. It easy to see that D(A) is dense in H; and, since A is a dissipative operator, it is enought
to show that 0 ∈ ρ(A). For this, it is proved that for F = (f1, f2, · · · , f7)T ∈ H, there exists only
one U = (u, v, U, V, η, w,W )T ∈ D(A) such that A U = F .
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3 Exponential stability

Teorema 3.1. Let us suppose that (7)-(9) hold. Then the semigroup eAt is exponentially stable.

Proof. The main tool we use is Prüss’s results [9], which is summarized in the following theorem.

Teorema 3.2. Let (S(t))t≥0 be a C0-semigroup on a Hilbert space H generated by A. Then the
semigroup is exponentially stable if and only if

iR ⊂ ρ(A), and ‖(i λ I −A)−1‖L(H) ≤ C, ∀λ ∈ R.

Since the resolvent operator is holomorphic, it is enough to prove that ‖(i λ I −A)−1‖L(H)≤ C
for |λ| large enough. This is established by the following inequalities:

[I 1]: γ1|W |2 +

∫ l0

0

∫ ∞
0

g(s)|ηx(s)|2dsdx ≤ C‖U‖H‖F‖H.

For any ε > 0 sufficiently small and |λ| large enough, hold:

[I 2]:

∫ l0

0

|U |2 + |ux|2dx ≤ Cε‖U‖H‖F‖H + Cε‖F‖2H + ε

∣∣∣∣αux(l0) +

∫ ∞
0

g(s)ηx(l0, s)ds

∣∣∣∣2,
[I 3]: ρ2|W |2 ≤ C‖U‖H‖F‖H + C

∫ l0

0

α|vx|2dx,

[I 4]:

∫ l

l0

[
α2|vx|2 + ρ2|V |2

]
dx ≤ C‖U‖H‖F‖H + C‖F‖2H.

4 The Lack of Exponential Stability

In this section, it is proved that when there is no memory effect, i.e., when g = 0 the system
is not exponentially stable. Here α1, α2, ρ1, ρ2, ρ3, γ2 are as before, and γ1, now, is a positive
constant. Moreover, for this problem, we consider the phase space

H̆ =
{
U = (u, v, U, V, w,W )T ∈ H1

∗ × L2 × C2; v(l) = w
}
.

Let us denote by B the unbounded operator of H̆ given by

B U =

(
U, V,

α1

ρ1
uxx,

α2

ρ2
vxx,W,−

γ1

ρ3
W − γ2

ρ3
w − α2

ρ3
vx(l)

)T
with domainD(B)=

{
U=(u, v, U, V, w,W )T ∈ (H1

∗ ∩H2)×H1
∗×C2;V (l)=W,α1ux(l0)=α2vx(l0)

}
.

It is not difficult to see that the operator B is the infinitesimal generator of a C0-semigroup of con-
tractions over H̆, which we will denote by T (t). This shows that the problem without memory
effect is well-posed.

The main tool we use to prove that the system is not exponentially is the Weyl’s theorem
about the invariance of the essential spectral radius by compact perturbations. To do that, let us
consider the following conservative system

ρ1ũtt − α1ũxx = 0 in ]0, l0[ × ]0,+∞[ (18)

ρ2ṽtt − α2ṽxx = 0 in ]l0, l[ × ]0,+∞[ (19)

ρ3w̃tt + γ2w̃ + α2ṽx(l) = 0 in ]0,+∞[ (20)
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verifying the same boundary and transmission conditions and with the same initial data, where
α1, α2, ρ1, ρ2, ρ3 and γ2 are as before. That is, with boundary conditions:

ũ(0) = 0, ṽ(l) = w̃ in ]0,+∞[ (21)

and transmission conditions:

ũ(l0) = ṽ(l0), α1ũx(l0) = α2ṽx(l0) in ]0,+∞[ (22)

and initial data

(ũ(0), ṽ(0), ũt(0), ṽt(0), w̃(0), w̃t(0)) = (u0, v0, u1, v1, w0, w1) ∈ H̆. (23)

The total energy associed with this system is

Ẽ(t) =
1

2

[∫ l0

0

[
ρ1|ũt|2+α1|ũx|2

]
dx+

∫ l

l0

[
ρ2|ṽt|2+α2|ṽx|2

]
dx+ρ3|w̃t|2+γ2|w̃|2

]
,

and it is not difficult to see that
d

dt
Ẽ(t) = 0. Therefore the system is conservative and there is no

decay. Now we are in conditions to show the main result of this section.

Teorema 4.1. The semigroup T (t) associated to system without memory effect is not exponentially
stable.

Proof. The main idea of the proof is to show that the semigroup T (t) have the same essential
spectral radius of the semigroup associated to conservative system (18)-(23), that we denote as
T0(t). Here, we use the follows Weyl’s Theorem (see [8], Theorem 5.35, p. 244)

Teorema 4.2 (Weyl). Let S and K two continuous operator over a Banach space X. If S −K is
a compact operator, then S and K have the same essential spectrum radius.

The difference T (t) − T0(t) is a compact operator, from which we obtain ωess(T ) = ωess(T0).
But since T0(t) is unitary, then ωess(T0) = 0. Denoting by ω(T ) and ωσ(B) the type of semigroup
T (t) and the spectral upper bound of spectrum σ(B) respectively, we have (see [5], Corollary 2.11)
that ω(T ) = max {ωσ(B), ωess(T )} = 0. This imply that T (t) is not exponentially stable.

5 Polynomial decay

Here is shown that the solutions of the system without memory effect decays polynomially to
zero as t−1/2. This means that the dissipation given by tip load produces a polynomial rate of
decay. To show this, we use the Borichev and Tomilov’s Theorem (see [2]):

Teorema 5.1. Let S(t) be a bounded C0-semigroup on a Hilbert space H with generator A such
that iR ⊂ ρ(A). Then

1

|λ|β
‖(iλI −A)−1‖L(H) ≤ C, ∀ λ ∈ R ⇐⇒ ‖S(t)A−1‖D(A) ≤

C

t1/β
, ∀ t > 0.

Our starting point is to study the solution of the resolvent equation iλU − BU = F . From
this equation, written in terms of its components, we obtain the following inequalities, for |λ| large
enough:

[I 5]: γ1|W |2 ≤ C‖U‖‖F‖;

[I 6]:

∫ l

l0

[ρ2|V |2 + α2|vx|2]dx ≤ C|λ|2‖U‖‖F‖+ C‖F‖2;

[I 7]:

∫ l0

0

[ρ1|U |2 + α1|ux|2]dx ≤ C|λ|2‖U‖‖F‖+ C‖F‖2.
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Teorema 5.2. The semigroup T (t) associated to system without memory effect decays polynomially
as t−1/2 as t→∞. Moreover, if U0 ∈ D(Bk), then

‖T (t)U0‖H̆ ≤
Ck
tk/2
‖U0‖D(Bk).

Proof. From the inequalities above, for |λ| large enough, follows that ‖U‖2H̆ ≤ C|λ|4‖F‖2H̆. Then,

for |λ| large enough, ‖(iλI − B)−1F‖H̆ = ‖U‖H̆ ≤ C|λ|2‖F‖H̆. Therefore, from Borichev and
Tomilov’s Theorem our conclusion follows.

6 Conclusões

The main result of this paper was to show that the system (1)–(6) is exponentially stable if
and only if the memory effect is effective over the viscoelastic part of the material. This means
that the dissipative properties given by the tip load is not enough to produce exponencial rate of
decay when the memory effect is not effective. Finally, when g = 0, we prove that the system is
not exponentially stable but the dissipation given by the tip load produce polynomial stability.
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