Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Modelagem Matemática da fermentação alcoólica de mosto de uva na produção de vinhos

Raiane J. Conci¹
Taís A. G. Becker²
Delair Bavaresco³
PET/IFRS, Bento Gonçalves, RS

A Serra Gaúcha é a principal produtora de vinhos do Brasil [1] e reconhecida nacionalmente por este fator. Considerando a inserção do Instituto Federal do Rio Grande do Sul - Campus Bento Gonçalves nesse contexto, realizou-se uma pesquisa teórico experimental de Modelagem Matemática dos processos dinâmicos da fermentação alcoólica do mosto de uva, a fim de prever os comportamentos dinâmicos de algumas grandezas durante a fermentação.

A produção de vinhos consiste, basicamente, em um processo de fermentação no qual enzimas de leveduras - espécie de fungos - transformam açúcar do mosto, este último resultante da prensagem da uva, em álcool e gás carbônico. Esse processo proporciona uma dinâmica populacional de leveduras, as quais tem seu crescimento afetado por dois fatores principais: a disponibilidade ou falta de alimento e o excesso de álcool que torna o meio tóxico para sua sobrevivência. Em decorrência, ocorrem outros processos dinâmicos nesse meio: a perda de massa total, a diminuição da densidade de massa, a redução do nível de açúcares e o aumento da concentração de álcool.

A atividade experimental foi realizada com mosto de uva da variedade Isabel, submetido à fermentação natural, isto é, com leveduras naturalmente presentes na própria microflora da uva. Os instrumentos de mensuração utilizados foram o refratômetro digital para obtenção da concentração inicial de açúcar, cujo fator obtido foi de 152g/l e o densímetro de massa específica para a verificação da densidade de massa. O processo de fermentação foi acompanhado pela mensuração periódica da densidade de massa, sendo a cada doze horas nos primeiros seis dias e a cada vinte e quatro horas nos demais sete dias em função da diminuição gradativa da velocidade de fermentação. Com base nos dados obtidos correspondentes a variação da densidade de massa foi calculada massa total do mosto e, consequentemente a perda de massa a cada medição do mosto.

O mosto em fermentação é um meio significativamente isolado do ambiente, com dinâmica populacional de leveduras e com quantidade de alimentos limitada. Essas condições são favoráveis para analisar a dinâmica populacional de leveduras por meio do modelo de *Verhulst*. O referido modelo leva em consideração a competição entre indivíduos da mesma espécie, sendo que, para uma baixa concentração inicial de indivíduos, a população cresce livremente e, após um determinado tempo, aparece a competição por algum recurso essencial, implicando na redução da taxa de crescimento populacional. Quando a população atinge um limite crítico, o crescimento se detém. Esse limite é chamado de capacidade suporte do meio. O modelo de *Verhulst* é dado pela equação (1):

$$P(t) = \frac{kP_0}{P_0 + (k - P_0)e^{-rt}}$$
(1)

 $^{^1}$ raiane.conci@hotmail.com

²taisagbecker@hotmail.com

³delair.bavaresco@bento.ifrs.edu.br

2

no qual P_0 é a população inicial, k a capacidade suporte e r a taxa de crescimento populacional.

Como não é possível mensurar diretamente a população de leveduras e, considerando que a perda de massa ocorre em função da população de leveduras atuantes no meio a cada instante de tempo, ajustou-se o modelo de *Verhulst* à dinâmica da perda de massa do mosto durante a fermentação. A variação da densidade de massa multiplicada por 0,133 fornece o crescimento do teor alcoólico e, cerca de 17 gramas de açúcar são necessárias para produzir 10 gramas de álcool [2]. A partir dessas informações estimou-se a dinâmica da concentração de álcool e de açúcares do mosto durante o processo de fermentação.

Os gráficos do ajuste do modelo de *Verhulst* aos dados experimentais, bem como da estimativa das demais grandezas em discussão são mostrados na Figura 1.

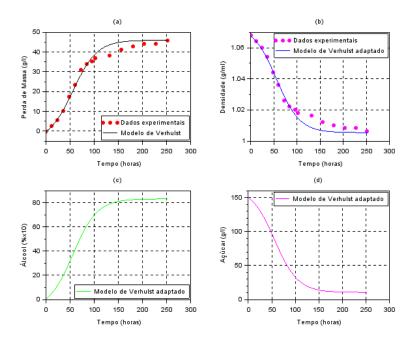


Figura 1: Resultados obtidos para: (a) perda de massa; (b) variação de densidade de massa; (c) variação do teor alcoólico; (d) variação da concentração de açúcar. Fonte: Elaboração dos autores.

Com base nesses resultados constata-se que o modelo de *Verhulst* descreve satisfatoriamente a perda de massa que é consequência da dinâmica populacional de leveduras. O modelo bem definido para essa grandeza permitiu estimar a dinâmica das concentrações de álcool e açúcar durante o processo de fermentação. Os resultados obtidos podem vir a otimizar a produção de vinhos na Serra Gaúcha e, por isso, este estudo terá continuidade.

Referências

- [1] Silva, M. C., Alves, L. C. e Souza, S.M.A. A Produção de Vinhos na América do Sul: Comparativo entre Brasil e os Países Produtores do Continente, V Seminário de Pesquisa em Turismo do MERCOSUL, 2014. ISSN: 1806-0447.
- [2] Indupropil. O básico para fazer vinho. Disponível em: https://www.indupropil.com.br/upload/download/index/upload/391/ Acesso em: 27 mar. 2021.