Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Solução do problema de Riemann para escoamento de água-óleo na presença de solvente em meio poroso.

Yvonne Santa Cruz Cárdenas¹ LAMAP, UFJF, Juiz de Fora, MG Prof. Dr. Grigori Chapiro² LAMAP, UFJF, Juiz de Fora, MG Dr. Luis Fernando Lozano Guerrero³ LAMAP, UFJF, Juiz de Fora, MG

Resumo. Este trabalho estuda o sistema de leis de conservação que descreve o modelo simplificado do trabalho de Walsh e Lake (1989). Foi resolvido o problema de Riemann correspondente classificando as possíveis soluções de acordo com a saturação de água no ponto de injeção. Foram encontradas três possibilidades: (1) onda de choque, (2) onda de rarefação, (3) ondas compostas. Foi demonstrado que a onda de choque é entrópica. Para isso, foi provado que a existência da solução na forma de ondas viajantes do problema viscoso associado conectando os equilíbrios correspondentes aos estados do problema de Riemann na forma de α e ω -limites. Todos os resultados teóricos foram validados através de simulações numéricas.

Palavras-chave. Leis de conservação. Ondas viajantes. Problema de Riemann. Injeção de solventes em meios porosos. Recuperação avançada de petróleo.

1 Introdução

A injeção de solventes é uma técnica de recuperação avançada de petróleo. É um dos primeiros métodos de produção de óleo adicional que melhora a mobilidade do fluido deslocado, implicando num aumento do fator de recuperação [1]. Em [2] é mostrado um sistema de leis de conservação que estuda o deslocamento de óleo por um solvente miscível na fase aquosa imiscível. O fluxo fracionário de água é considerado como uma função dependendo da saturação de água e do volume fracionário de solvente na fase oleica, entre outras considerações. Os autores mostram um procedimento gráfico para determinar a solução, encontram uma taxa ótima de água com solvente entre outros.

Neste trabalho estudamos uma versão mais simples do modelo mostrado em [2], considerando o fluxo fracionário de água só como função da saturação de água. Provamos a existência da solução na forma de ondas viajantes. Resolvemos o problema de Riemann fixando o estado mais (ou condição inicial) e variando o estado menos (condição de injeção). Verificamos os resultados numericamente usando MATLAB e RCD (Reaction-Convection-Diffusion Equations' Solver), ver [3] para detalhes.

2 Solução na forma de ondas viajantes

Em [2], um sistema de leis de conservação é dado e o estudamos num caso particular considerando o fluxo fracionário da água como uma função que só depende da saturação da água:

$$\partial_t S_w + \partial_x f_w = 0, \qquad \partial_t (C_{so} S_o) + \partial_x (C_{so} f_o) = 0, \qquad (1)$$

¹yvonne@ice.ufjf.br

²grigori@ice.ufjf.br

³luisfer99@gmail.com

2

onde S_w é a saturação de água, S_o é a saturação de óleo, C_{so} é o volume fracionário de solvente na fase oleica, f_w é o fluxo fracionário da água e f_o é o fluxo fracionário do óleo, definidos por:

$$f_w + f_o = 1, \quad f_w(S_w) = (K_{rw}/\mu_w)(K_{rw}/\mu_w + K_{ro}/\mu_o)^{-1},$$
(2)

onde μ_w e μ_o são viscosidades constantes, dadas na Tabela 1. As permeabilidades relativas da fase aquosa K_{rw} e da fase oleica K_{ro} são funções de S_w como definidas a seguir

$$K_{rw}(S_w) = \begin{cases} 0, \ S_w < S_{wc}, \\ S^2, S_{wc} < S_w \le 1, \end{cases} \quad K_{ro}(S_w) = \begin{cases} 0, \ S_w \ge 1 - S_{or}, \\ (1 - S)^2, \ 0 \le S_w \le 1 - S_{or}, \end{cases}$$
(3)

onde $S = (1 - S_w - S_{or})/(1 - S_{wc} - S_{or})$, S_{wc} e S_{or} são a saturação de água conata e a saturação do óleo residual, respectivamente, e são dadas na Tabela 1. O meio poroso é considerado saturado, i.e. $S_w + S_o = 1$. Consideramos o Sistema (1) com a seguinte condição inicial

Tabela 1: Valores constantes para os parametros.			
Símbolo	Descrição	Valor	Fonte
S_{wc}	Saturação de água conata	0.0	[2]
S_{or}	Saturação de óleo residual	0.15	[2]
μ_w	Viscosidade da fase água	1	[2]
μ_o	Viscosidade da fase óleo	2	[2]
S_w^+	Saturação de água no ponto inicial	0.75	
$f_w(S_w^+)$	Fluxo fracionário avaliado em S_w^+	0.9911894273	Eq.(2)

$$S_w(x,0) = \begin{cases} S_w^-, \ x < 0, \\ S_w^+, \ x > 0, \end{cases} \quad e \quad C_{so}(x,0) = \begin{cases} C_{so}^-, \ x < 0, \\ C_{so}^+, \ x > 0, \end{cases}$$
(4)

onde $U^- = (S_w^-, C_{so}^-)$ é o estado menos e $U^+ = (S_w^+, C_{so}^+)$ é o estado mais. Optamos por estudar os choques que têm perfil viscoso, portanto, são adicionados termos de viscosidade ao Sistema (1):

$$\partial_t S_w + \partial_x f_w = \epsilon \partial_{xx} S_w, \qquad \partial_t (C_{so} S_o) + \partial_x (C_{so} f_o) = \epsilon \partial_{xx} C_{so}, \tag{5}$$

onde ϵ é uma constante não nula. Isto permite encontrar a solução na forma de ondas viajantes do sistema associado, trocando as variáveis de (x,t) para coordenadas viajantes $(\xi = x - vt, t)$, onde v representa a velocidade da onda viajante. O sistema original de equações diferenciais parciais (EDPs) pode ser reescrito como um sistema de equações diferenciais ordinárias (EDOs), similar ao que foi feito em [5]. Além disso, os estados menos e mais correspondem aos seguintes pontos de equilíbrio esquerdo e direito:

$$\lim_{\xi \to -\infty} U(\xi) = U^{-}, \ \lim_{\xi \to +\infty} U(\xi) = U^{+}.$$
(6)

Ao fazer a mudança de variáveis para coordenadas viajantes obtém-se o sistema de EDOs

$$\begin{cases} d_{\xi}S_{w} = \epsilon^{-1} \left(f_{w} - f_{w}^{+} - v(S_{w} - S_{w}^{+}) \right) = F_{1}(S_{w}, C_{so}), \\ d_{\xi}C_{so} = \epsilon^{-1} \left((1 - f_{w})C_{so} - (1 - f_{w}^{+})C_{so}^{+} - v((1 - S_{w})C_{so} - (1 - S_{w}^{+})C_{so}^{+}) \right) = F_{2}(S_{w}, C_{so}). \end{cases}$$

$$\tag{7}$$

2.1 Localização dos pontos de equilíbrio

Provar que o Problema de Riemann (1), (4) tem solução na forma de ondas viajante significa provar que o Sistema (7) tem uma órbita que liga o equilíbrio esquerdo ao direito. Para localizar os equilíbrios de (7) estudaremos os zeros do campo vetorial associado:

$$d_{\xi}S_w = 0, \ d_{\xi}C_{so} = 0, \ \text{onde} \ v = (f_w^+ - f_w^-)/(S_w^+ - S_w^-).$$
 (8)

Observa-se que para cada S_w^- tem-se um valor diferente para v. Usando os valores dados na Tabela 1, pode ser obtido a curva de nível de $F_2(S_w, C_{so}) = 0$ concluindo o seguinte:

- Os pontos de equilíbrio (S_w, C_{so}) encontram-se sobre uma reta horizontal.
- As segundas componentes dos pontos de equilíbrio devem ser iguais a 1, i.e. $C_{so} = 1$.

(a) Fluxo fracionário da água (ver- (b) Autofunções associadas a (c) Autofunções associadas a melha) intersectado por duas retas (S_w^-, C_{so}^-) . pontilhadas (celeste).

Figura 2.1: Equilíbrios de (7), com $S_w^+ = 0.75$. (a) Os pontos $(S_w^T, f_w(S_w^T))$ e $(S_w^m, f_w(S_w^m))$ são as interseções entre f_w e a tangente a f_w que passa por (S_w^+, f_w^+) e a reta que liga $(S_{wc}, f_w(S_{wc}))$ e (S_w^+, f_w^+) . (b) e (c) Classificação dos pontos de equilíbrio.

Para ter informação sobre S_w consideramos $F_1(S_w, C_{so}) = 0$, como $\epsilon \neq 0$ obtém-se:

$$f_w = vS_w + (f_w^+ - vS_w^+).$$
(9)

Esta equação representa os pontos de interseção de uma reta de inclinação v com a curva de fluxo fracionário da água nos pontos $(S_w^+, f_w^+) \in (S_w, f_w)$, veja Fig. 2.1(a). Na Fig. 2.1(a) mostra-se, que dependendo do valor de S_w tem-se dois ou três pontos de interseção.

2.2 Número de pontos de equilíbrio

Para identificar os possíveis equilíbrios estudaremos a primeira componente do campo (8). Na Eq. (9), a reta $y = vS_w + (f_w^+ - vS_w^+)$ tem uma inclinação v que depende de S_w^- , veja (8). A variação de v cria um leque de retas que intersectam a função do fluxo fracionário da água. Por exemplo, na Fig. 2.1(a) tem-se duas retas pontilhadas (cor celeste) que intersectam f_w . Uma tem inclinação $(f_w(S_w^+) - f_w(S_w^T))/(S_w^+ - S_w^T)$ e é tangente à curva de fluxo fracionário da água no ponto S_w^T . A outra passa pela origem e por $(S_w^+, f_w(S_w^+))$, intersectando a curva f_w em 3 pontos: $(S_{wc}, f_w(S_{wc})), (S_w^m, f_w(S_w^m)), (S_w^+, f_w(S_w^+))$. O valor de S_w^T é calculado com a seguinte equação:

$${}'_{w}(S_{w}^{T}) = (f_{w}(S_{w}^{+}) - f_{w}(S_{w}^{T}))/(S_{w}^{+} - S_{w}^{T}).$$

$$(10)$$

Entretanto, o valor de S_w^m obtém-se calculando $f_w(S_w^m) = \theta_2 S_w^m$, onde θ_2 é a inclinação da reta que passa pela origem e pelo ponto (S_w^+, f_w^+) , veja Fig. 2.1(a). Com o estudo geométrico feito na Fig. 2.1(a) é demonstrada a Proposição 2.1.

Proposição 2.1. A reta $y = vS_w + (f_w^+ - vS_w^+)$ da Eq. (9) pode intersectar a curva do fluxo fracionário da água em dois ou três pontos, obtendo o número de equilíbrios.

- Se $S_w^- \in]S_w^+, 1 S_{or}]$, existem dois equilibrios: $(S_w^-, C_{so}^-) \in (S_w^+, C_{so}^+)$.
- Se $S_w^- \in]S_w^m, S_w^+]$, existem dois equilíbrios: $(S_w^-, C_{so}^-) e (S_w^+, C_{so}^+)$.
- Se $S_w^- \in [S_w^T, S_w^m]$ existem três equilibrios: $(S_w^e, C_{so}^e), (S_w^-, C_{so}^-), (S_w^+, C_{so}^+),$ tal que $S_w^e < S_w^- < S_w^+ e S_w^e \in [S_{wc}, S_w^T].$

4

• Se $S_w^- \in [S_{wc}, S_w^T[$ existem três equilibrios: $(S_w^-, C_{so}^-), (S_w^e, C_{so}^e), (S_w^+, C_{so}^+),$ tal que $S_w^- < S_w^e < S_w^+ e S_w^e \in]S_w^T, S_w^m].$

Observação 2.1. A Proposição 2.1 vale para toda função de fluxo fracionário em forma de S.

2.3 Classificação dos pontos de equilíbrio

Na seção anterior determinamos o número de equilíbrios que tem o Sistema (7) dependendo da posição de S_w^- . Nesta seção, os classificamos nas vizinhanças correspondentes com base no Teorema de Hartman-Grobman. Considere o Sistema (7) linearizado $U' = J(U_0)U$, onde $U = (S_w, C_{so})^T$ e $J(U_0)$ é a matriz jacobiana avaliada no ponto de equilíbrio $U_0 = (S_{w_0}, C_{so_0})$. Calculamos os autovalores obtendo as raízes de $det(J(U) - \lambda I) = 0$:

$$\lambda_p = \epsilon^{-1} \left(f'_w(S_w) - v \right) \ \mathbf{e} \ \lambda_q = \epsilon^{-1} \left(-v(1 - S_w) + 1 - f_w \right), \tag{11}$$

com seus correspondentes autovetores:

$$\omega_p = [a \ 1], \ \omega_q = [0 \ 1], \ \text{onde}, \ a = \epsilon (\lambda_q - \lambda_p) / (-C_{so}\lambda_p).$$
(12)

No que segue os super-índices (-) e (+) denotam as autofunções associadas aos equilíbrios esquerdo e direito, respectivamente. As autofunções são definidas como:

$$\begin{cases} \lambda_p^{\mp} = \lambda_p(S_w^{\mp}, C_{so}^{\mp}) = \epsilon^{-1} \left(f'_w(S_w^{\mp}) - v \right), \\ \lambda_q^{\mp} = \lambda_q(S_w^{\mp}, C_{so}^{\mp}) = \epsilon^{-1} \left(1 - f_w(S_w^{\mp}) - v(1 - S_w^{\mp}) \right). \end{cases}$$
(13)

Com os valores da Tabela 1 obtemos os gráficos das autofunções definidas em (13), veja as Figs. 2.1(b) e 2.1(b). Estas gráficas representam a classificação dos autovalores associados aos equilíbrios esquerdo e direito. Observando a mudança de sinal nestas figuras é demonstrado Teorema 2.1.

Observação 2.2. Ao calcular $\lambda_p^{\mp} = 0$ e $\lambda_q^{\mp} = 0$, ϵ não influencia no sinal das autofunções.

Teorema 2.1. Seja o Sistema de EDOs (7) com $(S_w^+, C_{so}^+) = (0.75, 1)$ e as autofunções $(\lambda_p^{\mp}, \lambda_q^{\mp})$ descritas em (13). Com S_w^T dado em (10), os equilíbrios são classificados como segue:

- Se $S_w^- \in [S_{wc}, S_w^T]$, têm-se três equilíbrios: o esquerdo e direito são atratores hiperbólicos e o extra é uma sela hiperbólica (não há possibilidade de conexão).
- $S_w^- \in [S_w^T, S_w^m]$, têm-se três equilíbrios: o esquerdo é uma sela hiperbólica, o direito é um atrator hiperbólico e o extra é um atrator hiperbólico.
- $S_w^- \in]S_w^m, S_w^+[$, têm-se dois equilíbrios: o esquerdo é uma sela hiperbólica e o direito é um atrator hiperbólico.
- Se $S_w^- \in]S_w^+, 1 S_{or}[$, têm-se dois equilíbrios: o esquerdo é um atrator hiperbólico e o direito é uma sela hiperbólica (não há possibilidade de conexão).

Teorema 2.2. Seja o Sistema (7) com v definido em (8), $(S_w^+, C_{so}^+) = (0.75, 1), C_{so}^- = 1$ e $S_w^- \in]S_w^T, S_w^+[$, onde S_w^T é como em (10). Com os valores da Tabela 1, existe a solução deste sistema $(S_w(\xi), C_{so}(\xi)), tal que \lim_{\xi \to -\infty} (S_w(\xi), C_{so}(\xi)) = (S_w^-, 1)$ e $\lim_{\xi \to \infty} (S_w(\xi), C_{so}(\xi)) = (0.75, 1).$

Demonstração. Se $S_w^- \in]S_w^T, S_w^+[$ tem-se duas possibilidades: ou $S_w^- \in]S_w^T, S_w^m]$, ou $S_w^- \in]S_w^m, S_w^+[$, veja Fig. 2.2(a).

a) Se $S_w^- \in]S_w^m, S_w^+[$, pelo Teor. 2.1 só existem dois equilíbrios: o esquerdo (L) uma sela hiperbólica e o direito (R) um atrator hiperbólico.

Como L é uma sela hiperbólica, L tem duas variedades invariantes. A reta amarela vertical que passa pelo equilíbrio R é uma variedade invariante, veja Fig. 2.2(b). Portanto, as retas verticais

5

passando pelos pontos $L \in R$ são variedades invariantes. Isto implica que a região entre elas $\Omega = \{(S_w, C_{so}) : S_w^- < S_w < S_w^+\}$ é um conjunto invariante pelo Sistema (7).

Suponhamos, por absurdo, que não exista uma órbita que ligue L a R como no enunciado do teorema. Parte da variedade instável de L fica à direita de L como indicado em verde na Fig. 2.2(b). Esta variedade, que chamamos $U^u(L)$, é uma órbita do Sistema (7). Sem perda de generalidade suponhamos que esta órbita cresce na direção positiva de C_{so} quando varia ξ , veja Fig. 2.2(b). Para todos os pontos (S_w^+, C_{so}) com C_{so} positivo, podemos traçar o menor segmento de reta horizontal que junta $U^u(L)$ à reta $S_w = S_w^+$. Note que o campo vertical no extremo esquerdo deste segmento é positivo, enquanto que no extremo direito é negativo. Pelo Teorema de Valor Médio, existe ao menos um ponto neste segmento horizontal tal que o campo vertical nele é nulo. Com isso mostramos que o conjunto de todos os pontos da região Ω com os pontos onde o campo vertical é nulo não é limitado na direção positiva de C_{so} .

Por outro lado, o conjunto de todos os pontos da região Ω com os pontos onde o campo vertical é nulo coincide com o conjunto de todos os zeros de $F_2(S_w, C_{so})$. Considerando os valores dados na Tabela 1, substituindo (2) (com (3)) em $F_2(S_w, C_{so}) = 0$ obtém-se:

$$F_2(S_w, C_{so}) = (C_{so}(a_1 S_w^2 + a_2 S_w + a_3 + a_4 S_w^3) + a_5 S_w^2 + a_6 S_w + a_7) / (a_8 S_w^2 + a_9 S_w + a_{10}),$$
(14)

onde a_i , $\forall i = 1, \dots, 10$ são constantes e é uma função racional com denominador não nulo para $S_w \in [S_{wc}, 1 - S_{or}]$, que em particular se satisfaz para $S_w \in [S_w^m, S_w^+]$. Da Eq. (14) tem-se

$$C_{so}(S_w) = -(b_1 S_w^2 - b_2 S_w + b_3)/(b_4 S_w^3 - b_5 S_w^2 + b_6 S_w - b_7),$$
(15)

onde $b_i \forall i = 1, \dots, 7$ são constantes e o denominador é não nulo para $S_w \in \Omega$. A função $C_{so}(S_w)$ representa a curva de nível c_2 de $F_2(S_w, C_{so}) = 0$. O gráfico c_2 é uma curva limitada, dado que c_2 é contínua definida num intervalo compacto. Isto é uma contradição, pois tínhamos construído um subconjunto ilimitado de c_2 . Portanto, existe a órbita que liga L a R.

b) Se $S_w^- \in]S_w^T, S_w^m]$, pelo Teor. 2.1 tem-se três equilíbrios: o esquerdo (L) é uma sela hiperbólica, o direito (R) é um atrator hiperbólico e o extra (E) é um atrator hiperbólico. Também sabemos que se satisfaz a seguinte relação de ordem $S_w^e < S_w^T < S_w^- < S_w^+$.

Dado que a variedade estável de L é uma reta vertical (veja reta vermelha na Fig. 2.2(b)) que divide o retrato de fase em duas regiões: à esquerda e à direita dessa reta. O equilíbrio extra fica na região à esquerda da reta. Como esta reta é uma variedade estável logo, como as órbitas formam uma partição do espaço de fase, nenhuma órbita passa pelas duas regiões. Portanto o equilíbrio extra não influencia no estudo da existência de órbita conectando L a R. Logo pela parte a) garantimos a existência da órbita heteroclínica conectando L a R.

Na Fig. 2.2(a), as regiões I, $II \in III$ mostram onde pode existir (azul) ou não existe solução (vermelha) na forma de ondas viajantes para o Sistema EDPs (1) considerando $(S_w^+, C_{so}^+) = (0.75, 1)$. Enquanto, na Fig. 2.2(b) as retas vermelha e amarela indicam as variedades invariantes de $L \in R$, respectivamente. Estamos supondo que a variedade instável de L (cor verde) explode na direção positiva de C_{so} . Os pontos asteriscos indicam o conjunto solução da Eq. (10).

Corolário 2.1. Seja o Sistema (7) com v definido em (8), $(S_w^+, C_{so}^+) = (0.75, 1), C_{so}^- = 1,$ $S_w^- \notin]S_w^T, S_w^+ [e S_w^T \text{ como em (10). Com os valores da Tabela 1, não existe a solução } (S_w(\xi), C_{so}(\xi)) do Sistema (7) tal que <math>\lim_{\xi \to -\infty} (S_w(\xi), C_{so}(\xi)) = (S_w^-, 1) e \lim_{\xi \to \infty} (S_w(\xi), C_{so}(\xi)) = (0.75, 1).$

Teorema 2.3. Seja o Sistema de EDPs (1) com condições iniciais

$$U^{-} = (S_{w}^{-}, 1), \ x < 0 \ e \ U^{+} = (0.75, 1), \ x > 0.$$
 (16)

Com os valores de parâmetros dados na Tabela 1, existe solução na forma de ondas viajantes para o Problema de Riemann (1), (16), se e somente se, $S_w^- \in]S_w^T, S_w^+[e \ S_w^T \ \acute{e} \ como \ (10).$

(a) Regiões de S_w^- onde existe e não existe solução do tipo de ondas viajantes.

(b) Espaço de Fase de (7) que ajuda na demonstração do Teor. 2.2.

Figura 2.2: À direita Regiões de S_w^- . À esquerda espaço de fase obtido ao supor que não existe uma órbita heteroclínica que liga L a R.

Observação 2.3. O Corolário 2.1 e Teorema 2.3 são demostrados usando os Teoremas 2.1 e 2.2.

Para $\epsilon = 1$, na Fig. 2.3(a) mostramos a órbita que liga o equilíbrio esquerdo ao direito e os perfis do Sistema de EDOs (7) são mostrados na Fig. 2.3(b). Os resultados obtidos nesta seção não são influenciados pelo valor de ϵ , mas quando $\epsilon \to 0$ obtém-se simulações similares.

Figura 2.3: Foi considerado $\epsilon = 1 \text{ e } U^- = (0.39, 1)$. Nas Figs. (a) e (b) foi usado MATLAB e na Fig. (c) foi usado RCD.

3 Ondas de rarefação y Ondas compostas

Nesta seção verificamos numericamente que o Sistema (1) tem solução na forma de ondas de rarefação e na forma de ondas compostas, para S_w^- que pertence á região I e III, respectivamente, veja Fig. 2.2(a). Supondo que U é uma função diferenciável de $\xi = x/t$, o Sistema (1) pode ser reescrito como:

$$U'(\xi) = B, \text{ com } U'(\xi) = \begin{bmatrix} S'_w \ C'_{so} \end{bmatrix}^T, \quad B = \begin{bmatrix} 1/f''_w(S_w) \ 0 \end{bmatrix}^T.$$
(17)

A solução do Sistema (17) é mostrada nas Figs. 3.1(a) e 3.1(b), onde verificamos numericamente que para $S_w^- \in]S_w^+, 1 - S_{or}]$ o Problema de Riemann (1), (16) tem solução por onda de rarefação. Nestas figuras observamos que temos uma onda de rarefação conectando (S_w^-, C_{so}^-) com (S_w^+, C_{so}^+) .

6

Figura 3.1: Soluções do Sistema (1) com $U^+ = (0.75, 1)$: (a)-(b) solução por ondas de rarefação e (c)-(d) solução por ondas compostas. Nas figuras (a) e (c) foi usado MATLAB, e em (b) e (d) foi usado RCD.

Com $U^+ = (0.75, 1)$ foi verificado que para $S_w^- = S_w^T$, $C_{so}^- = 1$ o estado U^- satisfaz a condição de Rankine-Hugoniot e satisfaz que a velocidade da característica $\lambda_1(U^-)$ coincide com a velocidade de choque, veja Eq. (10). Neste caso dizemos que o choque é característico à esquerda e a solução do problema de Riemann consiste em um grupo de duas ondas sem estado intermediário constante entre elas. Tal grupo de ondas é chamada na literatura de "ondas compostas" [6]. Para $S_w^- \in [S_{wc}, S_w^T]$, temos uma solução composta. Como exemplo, consideramos $U^- = (0.12, 1)$ e $U^+ = (0.75, 1)$. A solução do Problema de Riemann (1), (16) consiste de um grupo de duas ondas com um estado intermediário entre elas: primeiro tem-se uma onda de rarefação conectando (S_w^-, C_{so}^-) com $(S_w^T, 1)$ seguido de um choque característico à esquerda que conecta $(S_w^T, 1)$ a (S_w^+, C_{so}^+) , ver Fig. 3.1(c). Similar resultado é mostrado na Fig. 3.1(d), com $U^- = (0.15, 1)$ e $U^+ = (0.75, 1)$.

4 Conclusões

Consideramos o modelo que descreve o deslocamento de óleo com ajuda de um solvente miscível na fase aquosa imiscível. O principal objetivo foi determinar a existência da solução na forma de ondas viajantes do problema de Riemann. Além disso, mostramos numericamente as soluções do problema de Riemann para alguns exemplos.

Agradecimentos

Agradecemos à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001 e à Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). Também agradecemos ao Prof. Dr. Aparecido J. de Souza por suas contribuções ao concluir este trabalho.

Referências

- [1] Lake, L. Enhanced oil recovery. Old Tappan, NJ: Prentice Hall Inc., 1989.
- [2] Lake, L., Walsh, M. Applying fractional flow theory to solvent flooding and chase fluids. Journal of Petroleum Science and Engineering, 281–303, 1989.
- [3] Lambert, W., Alvarez, A., Ledoino, I., Tadeu, D., Marchesin, D. e Bruining, J. Mathematics and Numerics for Balance Partial Differential-Algebraic Equations (PDAEs). JSComput, 1–56, 2020.
- [4] LeVeque, R. Numerical methods for conservation laws. (Vol. 3.) Springer, Birkhuser, 1992.
- [5] Lozano, L., F. Zavala, R., Q. e Chapiro, G. Mathematical properties of the foam flow in porous media. Computational Geosciences, (Vol. 25), 515–527, 2021.
- [6] Matos, V., Azevedo, A.,V., Da Mota, J., C. e Marchesin, D. Bifurcation under parameter change of Riemann solutions for nonstrictlyhyperbolic systems. *Zeitschrift für angewandte Mathematik und Physik* (Vol. 66) 1413–1452, 2015.

7