Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Aplicação da transformação raiz quadrada-conformação na análise de estabilidade de escoamentos viscoelásticos

Beatriz L. Carreira¹ Analice C. Brandi² FCT/Unesp, Presidente Prudente, SP Laison J. S. Furlan³ Matheus T. Araujo⁴ Leandro F. Souza⁵ ICMC/USP, São Carlos, SP

Resumo. Uma das dificuldades encontradas no tratamento de escoamentos viscoelásticos é o Problema do Alto Número de Weissenberg. Essa limitação consiste no surgimento de instabilidades ou na não-convergência da solução decorrentes de um colapso dos esquemas numéricos. Neste sentido, o objetivo deste trabalho é aplicar a transformação raiz quadrada como técnica estabilizadora do Problema do Alto Número de Weissenberg, a partir da decomposição do tensor conformação na simulação de um escoamento de Poiseuille para um fluido viscoelástico do tipo Giesekus. A Simulação Numérica Direta foi utilizada para investigar a estabilidade hidrodinâmica desse escoamento na transição laminar-turbulenta e comparando com escoamentos Newtonianos.

Palavras-chave. Problema do Alto Número de Weissenberg, Tensor Conformação, Simulação Numérica Direta, Fluido Viscoelástico.

1 Introdução

O estudo de escoamentos de fluidos viscoelásticos é importante na Reologia Computacional porque muitos materiais usados em aplicações industriais se comportam como fluidos viscoelásticos. Exemplos são produtos automotivos e aeroespaciais, várias embalagens de alimentos, tintas e muitos outros. Esses fluidos são caracterizados por possuírem propriedades viscosas e elásticas ao mesmo tempo, o que torna necessário adicionar uma equação constitutiva para o tensor extratensão não-Newtoniano. Dessa forma, cada vez mais, métodos computacionais são utilizados como ferramenta de modelagem e simulação de escoamentos de interesse no setor industrial.

Este trabalho, em particular, dedica-se à investigação da estabilidade hidrodinâmica do escoamento [2], com o objetivo de prever mudanças que ocorram no regime de escoamento laminar de um fluido levando-o potencialmente ao regime turbulento. Este processo é conhecido como transição laminar-turbulenta, e ainda não é completamente estabelecido, principalmente para escoamentos não-Newtonianos.

Geralmente grandezas adimensionais são empregadas para caracterizar um escoamento. O número de Weissenberg, por exemplo, está relacionado a escoamentos viscoelásticos, e é utilizado

 $^{^{1}} be a trizl carreira@gmail.com\\$

²analice.brandi@unesp.br

³laisonfurlan@usp.br

⁴matheustozo@gmail.com

⁵lefraso@icmc.usp.br

2

para mensurar o nível de elasticidade do fluido. Porém, um problema de instabilidade numérica surge exatamente a partir deste parâmetro, sendo conhecido na literatura como Problema do Alto Número de Weissenberg ou em inglês "High Weissenberg Number Problem" (HWNP).

Uma das causas do HWNP, segundo a literatura, está relacionada à perda da positividade dos tensores extra-tensão. Tendo em vista que o tensor conformação é simétrico e definido positivo e capaz de manter essas boas propriedades ao longo da evolução temporal do problema, então uma abordagem que surgiu na tentativa de solucionar problema relacionado ao alto número de Weissenberg formula o modelo a partir deste tensor [5].

Recentemente, Afonso et al. [1] apresentaram uma formulação núcleo do tensor conformação para uma grande classe de modelos constitutivos diferenciais, que admite o uso de diversas transformações para decomposição do tensor conformação. Essa técnica, que ficou conhecida como "kernel-conformation" engloba outras formulações específicas e não genéricas que já haviam sido construídas anteriormente.

Sendo assim, neste trabalho aplica-se a transformação raiz quadrada núcleo-conformação para estabilização do HWNP em um escoamento de Poiseuille bidimensional de um fluido viscoelástico Giesekus, utilizando a técnica de Simulação Numérica Direta (DNS). O principal objetivo é investigar a estabilidade hidrodinâmica desses escoamentos, inclusive para altos números de Weissenberg.

2 Formulação Matemática

Considera-se um escoamento bidimensional, incompressível, isotérmico e não-Newtoniano, governado pelas equações da continuidade e de conservação do momento, respectivamente,

$$\nabla \cdot \mathbf{u} = 0,\tag{1}$$

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{u}) = -\nabla p + \frac{\beta}{Re} \nabla^2 \mathbf{u} + \nabla \cdot \mathbf{T},\tag{2}$$

onde **u** representa o campo de velocidade, t é o tempo, p é a pressão e **T** é o tensor simétrico extra-tensão não-Newtoniano, dado por $\mathbf{T} = \begin{bmatrix} T^{xx} & T^{xy} \\ T^{xy} & T^{yy} \end{bmatrix}$.

O parâmetro adimensional $Re = \rho U L/\eta_0$ está associado ao número de Reynolds, onde L e U denotam as escalas de comprimento e velocidade, respectivamente, e ρ é a densidade do fluido. A contribuição do solvente Newtoniano é controlada pelo coeficiente adimensional $\beta = \eta_s/\eta_0$, onde $\eta_0 = \eta_s + \eta_p$ representa a viscosidade total do fluido, sendo η_s e η_p as viscosidades do solvente Newtoniano e polimérico, respectivamente.

Neste trabalho considera-se o escoamento de fluido viscoelástico governado pela equação constitutiva não linear do modelo Giesekus [4] dada por

$$\mathbf{T} + Wi\mathbf{T}^{\nabla} + \alpha_G \frac{WiRe}{1 - \beta} (\mathbf{T} \cdot \mathbf{T}) = \frac{1 - \beta}{Re} (\nabla \mathbf{u} + \nabla \mathbf{u}^{\top}), \tag{3}$$

onde α_G é o parâmetro de mobilidade que regula o comportamento "shear thinning" do fluido $(0 \le \alpha_G \le 1)$, $\mathbf{T} \cdot \mathbf{T}$ denota um produto tensorial e \mathbf{T} é a derivada convectada. O parâmetro adimensional $Wi = \lambda U/L$ é o número de Weissenberg, sendo λ o tempo de relaxação do fluido.

2.1 Formulação Raiz Quadrada-Conformação

Uma alternativa para descrever os modelos viscoelásticos usa o tensor conformação **A**. Esse tensor é simétrico e definido positivo e sua equação constitutiva pode ser escrita como

$$\frac{\partial \mathbf{A}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{A}) = \nabla \mathbf{u}\mathbf{A} + \mathbf{A}\nabla \mathbf{u}^{\top} + \frac{1}{W_i}f(\mathbf{A})P(\mathbf{A}), \tag{4}$$

sendo que a relação entre o tensor extra-tensão não-Newtoniano \mathbf{T} e \mathbf{A} pode ser dada por $\mathbf{T} = \xi(\mathbf{A} - \mathbf{I})$, onde ξ é um escalar definido como $\xi = (1 - \beta)/ReWi$. A função escalar $f(\mathbf{A})$ e o tensor $P(\mathbf{A})$, são definidos de acordo com o modelo do fluido. Em particular, para o modelo Giesekus $f(\mathbf{A}) = 1$ e $P(\mathbf{A}) = (\mathbf{I} - \mathbf{A})[\mathbf{I} + \alpha_G(\mathbf{A} - \mathbf{I})]$.

Através da decomposição espectral do tensor conformação $\mathbf{\Lambda} = \mathbf{O}^{\top} \mathbf{AO}$, pode-se construir uma equação de evolução para os autovalores da matriz \mathbf{A} a partir da equação (4). Posteriormente constrói-se uma equação de evolução para a função núcleo \mathbb{K} avaliada na matriz dos autovalores de \mathbf{A} , e finalmente, após as devidas manipulações algébricas, a equação de evolução da transformação núcleo aplicada ao tensor conformação é expressa por

$$\frac{D\mathbb{K}(\boldsymbol{A})}{Dt} = \frac{\partial\mathbb{K}(\boldsymbol{A})}{\partial t} + \nabla \cdot (\mathbf{u}\mathbb{K}(\boldsymbol{A})) = (\boldsymbol{\Omega}\mathbb{K}(\boldsymbol{A}) - \mathbb{K}(\boldsymbol{A})\boldsymbol{\Omega}) + 2\mathbb{B} + \frac{1}{Wi}\mathbb{H},$$
 (5)

sendo que os tensores \mathbb{B} e Ω surgem de uma reformulação do gradiente de velocidade, realizada por [3] e $\mathbb{H} = \mathbf{O}P(\mathbf{\Lambda})\mathbf{J}\mathbf{O}^{\top}$, onde \mathbf{J} é a matriz jacobiana de $\mathbb{K}(\mathbf{\Lambda})$.

Definindo $\mathbb{Q} = \mathbf{A}^{\frac{1}{2}}$ como a raiz quadrada do tensor conformação, então $\mathbb{Q}^2 = \mathbf{A}$. Após substituir a função núcleo \mathbb{Q} em (5), uma equação de evolução para a transformação raiz quadrada aplicada ao tensor conformação é finalmente obtida

$$\frac{\partial \mathbb{Q}}{\partial t} + \nabla(\mathbf{u}\mathbb{Q}) = (\mathbf{\Omega}\mathbb{Q} - \mathbb{Q}\mathbf{\Omega}) + \mathbf{B}\mathbb{Q} + \frac{1}{2Wi}f(\mathbb{Q}^2)\mathbb{Q}^{-1}P(\mathbb{Q}^2). \tag{6}$$

3 Simulação Numérica Direta

A fim de simplificar o problema e eliminar o tratamento da pressão na equação do momento, utiliza-se a formulação vorticidade-velocidade [2]. A vorticidade ω_z , em coordenadas bidimensionais, é matematicamente definida como

$$\omega_z = \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}.\tag{7}$$

Aplicando tal formulação, o problema agora consiste em resolver o sistema composto pela equação da continuidade (8), equação da vorticidade (9) e transporte de vorticidade (10), além das equações dos tensores não-Newtonianos (11) – (13)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,\tag{8}$$

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{\partial \omega_z}{\partial x},\tag{9}$$

$$\frac{\partial \omega_z}{\partial t} + u \frac{\partial \omega_z}{\partial x} + v \frac{\partial \omega_z}{\partial y} = \frac{\beta}{Re} \left[\frac{\partial^2 \omega_z}{\partial x^2} + \frac{\partial^2 \omega_z}{\partial y^2} \right] - \frac{\partial^2 T^{xy}}{\partial x^2} - \frac{\partial^2 T^{yy}}{\partial x \partial y} + \frac{\partial^2 T^{xx}}{\partial y \partial x} + \frac{\partial^2 T^{xy}}{\partial y^2}, \tag{10}$$

$$T^{xx} + Wi\left(\frac{\partial T^{xx}}{\partial t} + u\frac{\partial T^{xx}}{\partial x} + v\frac{\partial T^{xx}}{\partial y} - 2T^{xx}\frac{\partial u}{\partial x} - 2T^{xy}\frac{\partial u}{\partial y}\right) + \alpha_G \frac{WiRe}{1-\beta}\left(T^{xx^2} + T^{xy^2}\right) = 2\frac{1-\beta}{Re}\frac{\partial u}{\partial x}, \quad (11)$$

$$T^{xy} + Wi\left(\frac{\partial T^{xy}}{\partial t} + u\frac{\partial T^{xy}}{\partial x} + v\frac{\partial T^{xy}}{\partial y} - T^{xx}\frac{\partial v}{\partial x} - T^{yy}\frac{\partial u}{\partial y}\right) + \alpha_G \frac{WiRe}{1-\beta}\left(T^{xy}\left(T^{xx} + T^{yy}\right)\right) = \frac{1-\beta}{Re}\left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right),\tag{12}$$

$$T^{yy} + Wi\left(\frac{\partial T^{yy}}{\partial t} + u\frac{\partial T^{yy}}{\partial x} + v\frac{\partial T^{yy}}{\partial y} - 2T^{xy}\frac{\partial v}{\partial x} - 2T^{yy}\frac{\partial v}{\partial y}\right) + \alpha_G \frac{WiRe}{1-\beta}\left(T^{xy^2} + T^{yy^2}\right) = 2\frac{1-\beta}{Re}\frac{\partial v}{\partial y}. \tag{13}$$

3

4

3.1 Escoamento Base

Considerando o escoamento de Poiseuille viscoelástico e bidimensional, x representa a direção do escoamento, enquanto y representa a direção normal à parede. Para calcular o escoamento base, assume-se que todas as variáveis são dependentes apenas do eixo y, exceto para a pressão cujo gradiente é constante na direção x. O domínio na direção y está compreendido entre [-1,1].

No entanto, o sistema de equações que deriva dessas hipóteses não possui uma solução analítica completa disponível na literatura. Sendo assim, o escoamento base foi gerado numericamente por um código DNS bidimensional, sem perturbações, implementado com a formulação raiz quadrada-conformação para estabilização do HWNP. As simulações são realizadas até o escoamento atingir o estado estacionário.

4 Método Numérico

Na Figura 1 observa que o fluido entra no domínio computacional em $x=x_0$ e sai em $x=x_{max}$. Neste trabalho investiga-se o comportamento das ondas de Tollmien-Schlichting no escoamento, assim, perturbações temporais são introduzidas através da técnica de injeção e sucção de massa na parede. Isso ocorre na região compreendida entre x_1 e x_2 , após um intervalo de tempo, mais especificamente no tempo $t+\delta t$, impondo a velocidade v como sendo

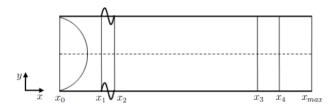


Figura 1: Definição do domínio computacional para o escoamento de Poiseuille.

$$v = Af(x)\sin(\omega_t t), \quad x_1 < x < x_2, \tag{14}$$

 \mathbf{e}

$$v = 0, \quad x \le x_1 \quad \text{ou} \quad x \ge x_2, \tag{15}$$

onde A é o parâmetro que ajusta a amplitude das perturbações, f(x) é uma função polinomial de grau 9 e ω_t é a frequência da perturbação. Técnicas de amortecimento são implementadas a fim de evitar reflexões de ondas nas regiões de entrada (entre x_0 e x_1) e saída (entre x_3 e x_4).

A discretização temporal das equações modelo do escoamento, bem como dos tensores não-Newtonianos é realizada através de um esquema de Runge-Kutta clássico de quarta ordem. Discretizações espaciais para o cálculo das derivadas são realizadas usando métodos de diferenças finitas compactas de alta ordem, mais especificamente, quinta e sexta ordem de precisão [7]. A utilização desses métodos demanda a solução de sistemas lineares tridiagonais. O sistema linear resultante da solução numérica da equação de Poisson é resolvido utilizando um esquema de Aproximação Multigrid (FAS) num ciclo V composto por 4 níveis [6]. A aplicação de discretizações centradas de alta ordem de precisão também faz necessário a utilização de um filtro espacial a fim de eliminar perturbações espúrias da solução numérica.

5 Verificação do Código

O teste de verificação ocorre para um código DNS que simula o problema de Poiseuille bidimensional, incompressível e isotérmico, considerando o fluido Giesekus, e a transformação raiz quadrada-conformação como técnica estabilizadora para simulações com alto número de Weissenberg. Para tanto, compara-se este código considerando $\alpha_G=0$ na equação (3) do modelo Giesekus, com a solução analítica do escoamento nas mesmas condições considerando o modelo Oldroyd-B.

Nas simulações numéricas considera-se o número de pontos no sentido do escoamento e no sentido normal à parede, sendo $i_{max} = 9049$ e $j_{max} = 249$, respectivamente, a distância entre dois pontos consecutivos nas direções x e y, $dx = 2\pi/16\alpha_r$ e $dy = 2/(j_{max} - 1)$, respectivamente, sendo α_r a parte real do número de onda. Os passos no tempo por período de onda são 400.

A Figura 2 demonstra o comportamento dos tensores não-Newtonianos T^{xx} e T^{xy} . Nota-se que os resultados numéricos obtidos com a formulação raiz quadrada-conformação (sqrt-conformação) concordam com a solução analítica do escoamento nas mesmas condições. Tem-se, portanto, um indicativo de que o código implementado é adequado para simular e analisar a estabilidade de escoamentos viscoelásticos do tipo Giesekus.

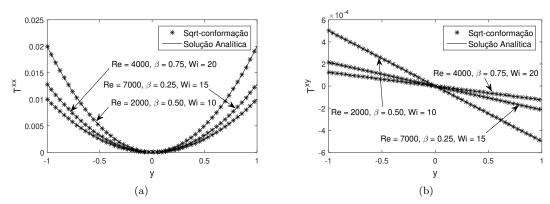


Figura 2: Solução numérica (Giesekus com $\alpha_G = 0$) e analítica (Oldroyd-B) para o escoamento base: (a) Tensor T^{xx} e (b) Tensor T^{xy} .

6 Resultados Numéricos

Simulações numéricas são apresentadas a fim de investigar o efeito da constante β , que controla a contribuição Newtoniana do fluido, na estabilidade hidrodinâmica em um escoamento de Poiseuille do fluido viscoelástico. Considera-se nas simulações: o número de pontos no sentido do escoamento e no sentido normal à parede, $i_{max}=505$ e $j_{max}=249$, respectivamente; a distância entre dois pontos consecutivos nas direções x e y são $dx=2\pi/16\alpha_r$ e $dy=2/(j_{max}-1)$, respectivamente. Aplicou-se 400 passos no tempo por período de onda, e a frequência de perturbação é $\omega_t=0.2$. Para ajuste da amplitude das ondas de Tollmien-Schlichting considerou-se $A=1\times 10^{-4}$.

Os resultados sobre a influência da constante β são apresentados na Figura 3, que contém as curvas que descrevem o comportamento das ondas de Tollmien-Schlichting do fluido Newtoniano e do fluido viscoelástico com seus parâmetros fixados. O comportamento crescente das curvas indica amplificação das perturbações e escoamentos instáveis. Em contrapartida, curvas decrescentes apontam para escoamentos estáveis, com decaimento das perturbações introduzidas.

Na Figura 3 são considerados os seguintes valores para a constante, $\beta = 0.50$, 0.75 e 0.90, sendo Re = 5000, $\alpha_G = 0.15$ e variações de Weissenberg (Wi). É possível notar principalmente dois efeitos sobre o comportamento dos escoamentos: os acréscimos no número de Weissenberg tornam

5

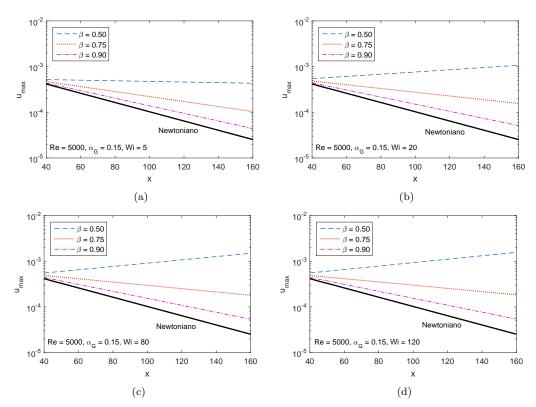


Figura 3: Valor máximo da perturbação da velocidade na direção do escoamento para diferentes valores de β e: (a) Wi = 5; (b) Wi = 20; (c) Wi = 80; e (d) Wi = 120.

os escoamentos menos estáveis considerando $\beta=0.75$ e 0.90, sendo mais facilmente percebido numa comparação entre as Figuras 3(a) e 3(b). Já para $\beta=0.50$, o escoamento que é neutro (Figura 3(a)) torna-se instável com o aumento do número de Wi.

Percebe-se ainda que as curvas dos escoamentos simulados com o modelo Giesekus vão se aproximando da curva do modelo Newtoniano, conforme o valor de β é aumentado. Além disso, em todos os casos, os escoamentos Newtonianos comportaram-se de forma mais estável quando comparados com os escoamentos viscoelásticos, mesmo para os menores valores de Wi.

A positividade do tensor conformação é uma característica que deve ser preservada durante toda

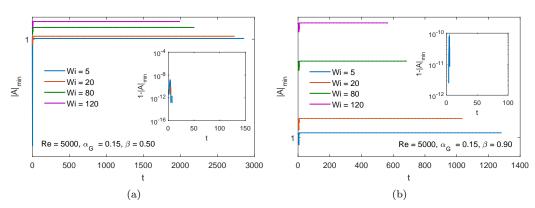


Figura 4: Evolução temporal do determinante mínimo do tensor conformação.

7

evolução temporal da equação constitutiva, necessária para se evitar as instabilidades do HWNP. Segundo Hulsen [5], isso ocorre se o determinante do tensor conformação, satisfizer $|A| \ge 1$.

Neste sentido, a evolução temporal do determinante mínimo do tensor conformação para alguns dos casos simulados é apresentada na Figura 4. Para os menores valores de Wi testados há uma pequena oscilação no valor do determinante no início da evolução temporal. Porém, a amplitude dessas oscilações é muito pequena, o que pode ser confirmado através do valor $1 - |\mathbf{A}|_{min}$, demonstrando que a transformação sqrt-conformação garante o valor de $|\mathbf{A}|_{min} > 1$. Com isso, confirma-se os resultados numéricos anteriormente apresentados para análise de estabilidade do escoamento utilizando esta técnica como estratégia para estabilização do HWNP.

7 Conclusões

Neste trabalho, a transformação raiz quadrada-conformação para estabilização do HWNP é apresentada. Considerando o fluido viscoelástico Giesekus, a análise de estabilidade para o esco-amento de Poiseuille bidimensional foi realizada utilizando a Simulação Numérica Direta. Para avaliar as taxas de amplificação máximas, diferentes valores dos parâmetros adimensionais foram testados, com atenção especial para a constante β , responsável por controlar a contribuição Newtoniana no fluido, e também para o número de Weissenberg. Além disso, analisou-se o determinante mínimo do tensor conformação, verificando que os valores obtidos são satisfatórios de acordo com a literatura, garantindo que os resultados referentes à análise de estabilidade são consistentes.

Agradecimentos

Os autores agradecem à CAPES pelo auxílio financeiro no desenvolvimento deste trabalho.

Referências

- [1] Afonso, A. M., Pinho, F. T. and Alves, M. A. The kernel-conformation constitutive laws, *Journal Non-Newtonian Fluid Mechanics*, 167-168:30–37, 2012. DOI: 10.1016/j.jnnfm.2011.09.008.
- [2] Brandi, A. C., Mendonça, M. T. and Souza, L. F. DNS and LST stability analysis of Oldroyd-B fluid in a flow between two parallel plates, *Journal Non-Newtonian Fluid Mechanics*, 267:14–27, 2019. DOI: 10.1016/j.jnnfm.2019.03.003.
- [3] Fattal, R. and Kupferman, R. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation, *Journal of Non-Newtonian Fluid Mechanics*, 126:23–37, 2005. DOI: 10.1016/j.jnnfm.2004.12.003.
- [4] Giesekus, H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, *Journal of Non-Newtonian Fluid Mechanics*, 2:69–109, 1982. DOI: 10.1016/0377-0257(82)85016-7.
- [5] Hulsen, M.A. Some properties and analytical expressions for plane flow of Leonov and Giesekus models, *Journal Non-Newtonian Fluid Mechanics*, 30:85–92, 1988. DOI: 10.1016/0377-0257(88)80019-3.
- [6] Souza, L. F. Instabilidade centrífuga e transição para turbulência em escoamentos laminares sobre superfícies côncavas. Tese de Doutorado, Instituto Tecnológico de Aeronáutica, 2003.
- [7] Souza, L. F., Mendonça M. T. and Medeiros M. A. F. The advantages of using high-order finite differences schemes in laminar-turbulent transition studies, *International Journal for Numerical Methods Fluids*, 48:565–592, 2005. DOI: 10.1002/fld.955.