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On exponential stability for mixtures with non-constant

coefficients
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Abstract. We consider the system modeling a mixture of three materials with frictional dissipation
and we show the exponential stability of semigroup associated. We show that the corresponding
semigroup is exponentially stable if and only if the imaginary axis is contained in the resolvent
set of the infinitesimal generator. In particular this implies the lack of polynomial stability to the
corresponding semigroup.
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1 Introduction

The theory of mixtures of solids has been widely investigated in the last decades, see for example
[1] and [6]. Here we study the one dimensional model of a mixture of n interacting continuous with
reference configuration over [0, l]. Let us denote by u1 := u1(x1, t), u

2 := u2(x2, t), u
3 := u3(x3, t)

where xi ∈ [0, l]. We assume that the particles under consideration occupy the same position at
time t = 0, so that, x = xi. This work is dedicated to characterize the exponential stability of the
following mixture problem:

ρ1u
1
tt = a11u

1
xx + a12u

2
xx + a13u

3
xx − ξ1(x)u1t − ξ2(x)u2t + (ξ1(x) + ξ2(x))u3t ,

ρ2u
2
tt = a12u

1
xx + a22u

2
xx + a23u

3
xx − ξ2(x)u1t − ξ3(x)u2t + (ξ2(x) + ξ3(x))u3t ,

ρ3u
3
tt = a13u

1
xx + a23u

2
xx + a33u

3
xx + (ξ1(x) + ξ2(x))u1t + (ξ2(x) + ξ3(x))u2t

−(ξ1(x) + 2ξ2(x) + ξ3(x))u3t ,

where ρi > 0, ξ(·) ∈ C1(0, l), A = (aij) and

D(x) =

[
ξ1(x) ξ2(x)
ξ2(x) ξ3(x)

]
are positive definite (real) symmetric matrices. If denoted C as

C =

[
1 0 −1
0 1 −1

]
,

we will have the following problem written in matrix form,

RUtt −AUxx + NU + B(x)Ut = 0, (1)
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where U = (u1, u2, u3)T , D0 is a positive definite (real) symmetric matrix, B = CTD(x)C and
N = CTD0C are positive semidefinite (real) symmetric matrices. The initial conditions are given
by

U(x, 0) = U0(x), Ut(x, 0) = U1(x). (2)

Finally, we consider Dirichlet boundary conditions

U(0, t) = U(l, t) = 0, , t ∈ R+. (3)

In [3] the authors showed that when N = 0 and B is a constant matrix then the semigroup
associated to (1)-(3) is exponentially stable if and only if

dim span{B(j)W
m; m = 0, 1, · · ·n− 1} = n,

where B(j) is a row vector of B and W = R−1A. Moreover they prove that the system in this
case never is polynomially stable. In particular their result implies in the corresponding semigroup
is exponential stable if and only if it is strongly stable (as in the finite dimensional case).

2 Semigroup formulation

Let us recall something results of linear algebra, whose proofs we refer to Bernstein [2].

Theorem 2.1. If 0 ≺ D ∈ Rr×r and C ∈ Rr×n, then

• CTDC � 0 .

• Rank CTDC = Rank C.

Definition. Let be W ∈ Rn×n. The pair (W,C) is observable if

dim span
{
Cj , CjW, CjW

2, ..., CjW
n−1, j = 1, 2..., n

}
= n. (4)

The following proposition is known as the Hautus test for observability.

Theorem 2.2. The pair (W, C) is observable if and only if

rank

[
W − Iλ

C

]
= n

for all λ eigenvalue of W.

From now on we use the semigroup theory (n = 3, r = 2 ) to show the well posedness. To do that
let us introduce the phase space H

H = [H1
0 (0, l)]n × [L2(0, l)]n,

that is a Hilbert space with the induzed norm

||(U, V )||2H =

∫ l

0

U∗xAUxdx+

∫ l

0

V ∗RV dx+

∫ l

0

U∗NUdx

Let us introduce the operator A given by

A
(
U
V

)
=

(
V

R−1AUxx −R−1NU −R−1BV

)
(5)
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with domain
D(A) = [H1

0 (0, l) ∩H2(0, l)]n × [H1
0 (0, l)]n.

Under this conditions the initial-boundary value problem can be rewritten as

d

dt
U = AU, U(0) = U0

where U(t) = (U(t), V (t))> and U0 = (U0, U1)>.

Theorem 2.3. The operator A is the infinitesimal generator of a contractions C0-semigroup, we
denote as SA(t) = eAt.

Proof. Note that D(A) is dense in H and a dissipative operator A, that is

Re (AU,U)H = −
∫ l

0

V ∗BV dx ≤ 0. (6)

Therefore we only need to show that 0 ∈ ρ(A) (see Liu and Zheng [5]). In fact, we prove that for
any F = (F,G) ∈ H there exists a unique U = (U, V ) in D(A) such that AU = F. In term of
their components

V = F, AUxx −NU −B(x)V = RG (7)

the above problem reduces to find U ∈ [H2 ∩H1
0 ]n such that

AUxx −NU = B(x)F + RG.

But this problem is well posed and ‖U‖H ≤ C‖F‖H, so 0 ∈ %(A).
2

Other important tool we use is the characterization of the exponential stability of a C0 semi-
group was obtained by Huang [4], and Pruss [7] independently. Here we use the version due to
Pruss.

Theorem 2.4. Let SA(t) be a C0-semigroup of contractions of linear operators on Hilbert space
H with infinitesimal generator A. Then SA(t) is exponentially stable if and only if

iR ⊂ ρ(A) (8)

and
lim sup
|λ|→+∞

||(iλI −A)−1||L(H) <∞ (9)

where L(H) denotes the space of continuous linear functions in H.

Note that A−1 defined in (5) is compact so D(A) is compactly embedded into H. Thus we
conclude that the spectrum of the operator A consists entirely of isolated eigenvalues.

The resolvent equation can be written as

iλU−AU = F. (10)

where U = (U, V ) ∈ D(A), F = (F,G) ∈ H and λ ∈ R. Taking the inner product in H and
considering the real part we get ∫ l

0

V ∗BV dx = Re (U,F)H. (11)
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3 On the stability of the system

In this section we assumed that D � D0 � 0. Note that RankB(x) is constant (Theorem 2.1).
We first see that in terms of the components the resolvent equation (10) can be written as

iλU = V + F (12)

iλV = R−1A︸ ︷︷ ︸
=W

Uxx −R−1 CTD0C︸ ︷︷ ︸
=N

U −R−1 CTD(x)C︸ ︷︷ ︸
=B(x)

V +G. (13)

The next Lemma will play an important role in the sequel.

Lemma 3.1. The operator A satisfies the condition (8) if and only if (4) holds.

Proof. Let us suppose that (8) is false, then there exists 0 6= U ∈ D(A) satisfying (10) with
F = 0. Using (11) we get∫ l

0

V ∗BV dx = 0 =⇒ V ∗(x)B(x)V (x) = 0 , almost always in (0, l). (14)

Note that in this case we have that U = (u1, u2 · · ·un)T and ui must be of the form

ui = αiν sin
(νπ
l
x
)
, ν ∈ N.

Because this functions verifies the boundary conditions (3). Note that the above functions ui are
the eigenvalues of the problem{

−wxx = µw

w(0) = w(l) = 0, µ =
(
νπ
l

)2
,

and moreover this is a basis of the L2(0, l), moreover it is a basis of
{
f ∈ H1(0, l), f(0) = f(l) = 0

}
.

This means that U = Yν sin
(
νπ
l x
)

where Yν = (α1
ν , · · ·αnν )T and V = iλY sin(nπxl ). Then

λ2 sin2(
nπx

l
)[CY ]∗D(x)[CY ] = 0.

Since D � D0 we have

λ2 sin2(
nπx

l
)[CY ]∗D0[CY ] = 0.

Since D0 is a positive definite we have CY = 0. Then

CU = 0. (15)

Now, (12)-(13) is equivalent to

−λ2U = WUxx, CU = 0. (16)

So, we have

CWUxx = 0 ⇒ CWU = 0.

multiplying by CW the first equation in (16) we get CW2U = 0. Using induction we get that
CWmU = 0 for all m. If (4) holds then U = 0 which is a contradiction, therefore (4) is not
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true. To prove the other implication, note that, if (4) is false then there exists Y 6= 0 such that
Y ∈ Rn\{0} is such that

CY = 0, (W − τI)Y = 0; τ > 0 (17)

see theorem 2.2. Then the functions

Uν =
(

sin(
νπ

l
x)Y , iλν sin(

νπ

l
x)Y

)
∈ D(A), ν ∈ N, (18)

are the eigenvectors of A with iλν = iνπl
√
τ the corresponding imaginary eigenvalues, for ν ∈ N.

Therefore iR ∩ σ(A) 6= ∅.
2

Note that (11) implies ∫ l

0

|CV |2λ1(x)dx ≤ C||U||H||F||H (19)

where λ1(x) is the first eigenvalue of D(x).

Lemma 3.2. The operator A satisfies the condition (9) if (4) is holds.

Proof. Suppose that (4) is not true. There then exists a sequence ων with ων →∞ and a sequence
vectors functions Uν = (Uν , Vν) ∈ D(A) with unit norm in H such that as ν →∞,

(iωνI −A) Uν −→ 0, in H,

This is

Fν = iωνUν − Vν → 0 in
[
H1

0 (0, l)
]n

(20)

RGν = iωνRVν −AUν,xx + NUν + BVν → 0 in
[
L2(0, l)

]n
. (21)

Taking the inner product of (iωνI −A) Uν by Uν in H and using the estimate (20) yields that∫ l

0

|D1/2CVν |2 dx =

∫ l

0

V ∗ν BVν dx → 0 (22)

then ∫ l

0

λ1(x)|CVν |2 dx ≤
∫ l

0

[CVν ]∗D(x)[CVν ] dx → 0. (23)

On other hand, we can easily deduce from (21) that

−ω2
νRUν −AUν,xx = iωνRFν + RGν −NUν −BVν . (24)

step 1 Multiplying equation (24) by CW−1R−1 we get

−ω2
νCW−1Uν −CUν,xx = iωνCW−1Fν + CW−1Gν −CA−1NUν −CA−1BVν .

and multiplying the above equation by λ1(x)(CUν)∗ we obtain

−ων
∫ l

0

λ1(ωνCUν)∗CW−1Uν dx+

∫ l

0

(λ1CUν,x)∗CUν,x dx = (25)

iων

∫ l

0

λ1(CUν)∗CW−1Fν dx+

∫ l

0

λ1(CUν)∗CW−1Gν dx−
∫ l

0

(λ′1CUν)∗CUν,x dx
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−
∫ l

0

λ1(CUν)∗CA−1NUν dx−
∫ l

0

λ1(CUν)∗CA−1BVν dx.

Since Uν,x and ωνUν are uniformly bounded in [L2(0, l)]n, the terms on the right hand side of
(25) converge to zero. From (20) we deduce that the first term the left hand side of (25) converge
to zero. Then (25) and (23)implies∫ l

0

|CVν |2λ1(x) + |CUν,x|2λ1(x) dx −→ 0 , as ν −→ +∞. (26)

Step 2 Using a procedure indutive, multiplying equation (24) by λ1(x)CWm−1R−1 we get∫ l

0

|CWmV |2λ1(x) + |CWmUx|2λ1(x) dx −→ 0 , as ν −→ +∞. (27)

for m = 0, ..., n− 1. Using the hypotheses we get∫ l

0

|Vν |2λ1(x) + |Uν,x|2λ1(x) dx −→ 0 , as ν −→ +∞.

Since A,R � 0 we obtain∫ l

0

V ∗ν RVνλ1(x) + U∗ν,xAUν,xλ1(x) dx −→ 0 , as ν −→ +∞. (28)

Step 3 Let q(x) be a real function C1 wich will be chosen later. Let Q � 0 a real symmetric
matrix. Note that for W ∈ H1(0, l), we have

2 Re

∫ l

0

q(x)W ∗QWx dx = q(l)W ∗(l)QW (l) − q(0)W ∗(0)QW (0)−
∫ l

0

q′(x)W ∗QW dx. (29)

Taking the inner product of (24) with q(x)U∗ν,x, integrating by parts , we obtain

−
∫ l

0

q(x)[ω2
νU
∗
ν,xRUν + U∗ν,xAUν,xx] dx =

∫ l

0

[iωνUν ]∗[RFνq(x)]x dx

+

∫ l

0

q(x)U∗ν,xRGν dx−
∫ l

0

q(x)U∗ν,xNUν dx−
∫ l

0

q(x)U∗ν,xBVν dx,

and using (29), we obtain that

∫ l

0

q′(x)[ω2
νU
∗
νRUν + U∗ν,xAUν,x] dx− q(x)U∗ν,xAUν,x|l0 = (30)

2Re

∫ l

0

[iωνUν ]∗[RFνq(x)]x dx+ 2Re

∫ l

0

q(x)U∗ν,xRGν dx

− 2Re

∫ l

0

q(x)U∗ν,xNUν dx− 2Re

∫ l

0

q(x)U∗ν,xBVν dx.
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Since Uν,x and ωνUν are uniformly bounded in [L2(0, l)]n, the terms on the right hand side of
(30) converge to zero.

Taking q(x) = x we deduce from (30) and ||(Uν , Vν)||2H = 1 that

U∗ν,x(l)AUν,x(l) −→ 1

l
; as ν −→∞. (31)

Taking q(x) = l − x we deduce from (30) and ||(Uν , Vν)||2H = 1 that

U∗ν,x(0)AUν,x(0) −→ 1

l
; as ν −→∞. (32)

We now take q(x) =

∫ x

0

λ1(s) ds in (30) to obtain that∫ l

0

[V ∗ν RVν + U∗ν,xAUν,x]λ1(x) dx −→ λ1 =
1

l

∫ l

0

λ1(x) dx > 0 . (33)

this is contradiction with (28).
2

4 Conclusions

As a consequence of the above result we have that the following statements are equivalents:

• SA(t) is strongly stable

• dim span
{
Cj , CjW, CjW

2, ..., CjW
n−1, j = 1, 2..., n

}
= n.

• SA(t) is exponentially stable

In particular our result implies that the corresponding semigroup is exponential stable if and only
if it is strongly stable (as in the finite dimensional case).
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