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Abstract. In this paper the dynamics of a dry-friction oscillator excited by a stochastic base
motion is studied. The non-smooth behavior of the dry-frictional force associated with the
non-smooth stochastic base motion induces in the system stochastic stick-slip oscillations.
The focus of the paper is to analyze the stick-slip dynamics of the system from a probabilistic
view point. Defined a time interval for analysis, the variables of interest are the number
of time intervals in which stick or slip occur, the instants at which they begin, and their
durations. These variables are modeled as stochastic objects and Monte Carlo simulations
are employed to compute their statistics.
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1 Introduction

Usually, stick-slip oscillations appear in mechanical systems in which uncertainties play
an important role. For example in drilling. Some of sources of uncertainties are the bit-rock
interaction, the presence of impacts, and fluid-structure interaction. In gears, randomness
arises from manufacturing, assembly errors, and random load. Beyond these sources of
uncertainties, the dry friction force itself presents an inherent random behavior [1, 2].
Because of this, a stochastic approach is the ideal way to address the problem of dry-
friction [3–6]. The objective of the paper is to characterize, from a a probabilistic view
point, the system response of a dry-friction oscillator excited by a stochastic base motion.
The variables of interest are the number of time intervals in which stick occur, the instants
at which they begin and their duration. These variables are modeled as stochastic objects.
The focus of the paper is to compute statistics of them to give complete histograms, instead
of the computation of some moments as is normally done.

2 Dynamics of the stick-slip oscillator

The system analyzed in this paper is composed by a simple oscillator (mass-spring)
moving on a rough surface, as sketched in Fig. 1. The friction between the mass and the
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Figure 1: Stick-slip oscillator.

surface is modeled as Coulomb friction. Thus, the resulting motion of the mass can be
characterized in two qualitatively different types, called modes: stick-mode (the mass and
base have the same velocity during an open time interval) and the slip-mode (the mass
and base have different velocities). The equation of motion of the system is [7]

m ẍ(t) + k x(t) = f(t) , (1)

where x is the position of the mass over the base, m is the mass, k is the spring stiffness and
f is the frictional force between mass and base. During the slip-mode, f(t) = nµsgn(v(t)−
ẋ(t)), where v is the base speed, n is the normal force exercised by the base on the mass and
µ is the constant friction coefficient. Besides this, the absolute value of the frictional force
is equal to the maximum friction force, fmax = µn. During the stick-mode, Eq. (1) can be
rewritten as mv̇ + k x(t) = f(t). The value of the frictional force during the stick-mode
is confined to the interval −fmax ≤ f ≤ fmax. Then, once in a stick-mode, the mass stays
moving with the base until x(t) = nµ

k
in case of positive base velocity, or until x(t) = −nµ

k

in case of negative base velocity. Observe that during the stick-mode, the modulus of the
elastic force increases up to the limit value |fmax|, i.e. the modulus of maximum friction
force. When it exceeds this value, the stick-mode ends and the mass will start a slip-mode.
Because of this, considering that base speed is constant in time, knowing the mass position
when a stick starts, it is possible to predict its duration. Remark that the duration of the
stick-mode is limited and its maximum value is dmax = 2nµ

k v
.

3 Stochastic model of the base motion

The velocity of the base is modeled as a random process in time, constant by parts,
V . We consider that V assumes only the two values 1, 0 m/s and −1, 0 m/s. Beside this,
defined an interval [0 , ta] for analysis, the number of changes of the velocity sign of V in
this interval is given by a random variable Q with Poisson distribution with parameter
λta. Thus, for q = 0, 1, 2, . . ., the probability mass function of Q is given by

Pr(Q = q) =
(λta)

q e−λta

q!
, (2)

where λta is the mean and λ is the expected value of number of changes per unit of
time. Note that, so far, nothing was said about the instants in which the changes oc-
cur. To determine them, we use the fact that we want our random process V to be
stationary and to be the most uncertain as possible. Therefore, it is reasonable to dis-
tribute all instants of changes over the interval [0 , ta] in a completely arbitrary way. Then,
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these instants of changes are modeled as independent and identically distributed random
variables, P1, P2, · · · , PQ, each of them uniformed distributed over [0 , ta]. Given a real-
ization of P1, P2, · · · , PQ, i.e. given the q-uple (p1, p2, · · · , pq), to generate a realization
of V on [0 , ta], we need to sort the samples. We transform the q-uple (p1, p2, · · · , pq) in
(y1, y2, · · · , yq) in a way that y1 ≤ y2 ≤ · · · ≤ yn. This operation generates new random
variables, Y1, Y2, · · · , YQ, wherein Y 1 = min1≤i≤n {P1, · · · , PQ}. Due to the bang-bang
base motion, if the mass is in the stick-mode in the instant just before the discontinuity
on the base velocity, it must be in the slip-mode in the instant just after the discontinuity.
Thus, the stick is interrupted by the discontinuities on the base velocity, as if the dynamics
were reinitialized; all previous information is lost.

4 Statistical analysis fo the stick-slip process

As it was assumed that the base motion is uncertain, the response of the stochastic
stick-slip oscillator is a random process. Defined a time interval for analysis, the variables
of interest are the number of time intervals in which stick or slip occur, the instants at
which they start, and their duration. They are modeled as stochastic objects, random
variables or random processes.

• The number of time intervals in which stick occur is a random variable ST .

• The number of time intervals in which slip occur is a random variable SL.

• The instants at which the sticks begin are modeled by a discrete random process
{T1, · · · , TST

}, where the subscripts 1, · · · , ST indicate the order that they occur,
i.e., the instant in which starts the first stick, the second, and so on up to the ST -th
stick.

• The duration of the sticks are modeled by a discrete random process {D1, · · · , DST
},

where again the subscripts 1, · · · , ST indicate the order that they occur.

• The instants at which the slips begin are modeled by a discrete random process
{L1, · · · , LSL

}, where 1, · · · , SL indicate the order that they occur.

• The duration of the sticks are modeled by a discrete random process {H1, · · · , HSL
},

where 1, · · · , SL indicate the order that they occur.

Figure 2 shows a sketch of the sequence of sticks and slips in the system response. Observe
that we count the first slip just after the first stick, i.e., we have L1 > T1. Besides this,
if the system response ends during a slip, the number of sticks is equal or the number
of slips, i.e. ST = SL. If the system response ends during a stick, then ST = SL + 1 .
Statistics of the stick-slip process were estimated by the Monte Carlo simulation method
using 18, 000 independent realizations of random the system response [8, 9]. A previous
convergence study was developed to determine the acceptable number of realizations. For
computation, the duration ta was chosen as 10 seconds and λ = 5.0. For the integration,
after some experiments with others methods, it was used the function ode45 of the Matlab
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Figure 2: Sketch of the sequence of sticks and slips in the system response for the case in
which ST = SL.

software, which applies the Runge-Kutta 4th/5th-order method as time-integration scheme
with a varying time-step algorithm. The maximal step size is equal to 10−4 seconds, and
the relative and absolute tolerance are equal to 10−9. The values of the parameters used
in all simulations were 1.0 Kg for the mass, 4.0 N/m for the spring stiffness, 1.0 N for the
normal force, 5.0 for the constant friction coefficient and v0 = 1.0 m/s for the modulus
of the base speed. The initial conditions of the system were modeled as two independent
random variables, uniformed distributed over [−1, 1]. Figures 3(a) and 3(b) shows the
normalized histograms of the number of time intervals in which stick and slip occur, i.e,
the random variables ST and SL. The estimated mean and variance to ST are respectively
16.71 and 7.94. To SL these values are 16.54 and 7.89.
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Figure 3: Normalized histograms constructed with 18,000 samples of (a) number of time-
intervals in which stick occur and (b)number of time-intervals in which slip occur.

Figures 4 and 5 shows the normalized histograms of the first six instants at which sticks
and slips begin, i.e., T1, · · · , T6 and L1, · · · , L6. Observing them we verify that T1, · · · , T6

and L1, · · · , L6 are not identically distributed random variables. As, T1 < · · · < TST
and

L1 < · · · < LSL
, we have that T1, · · · , TST

and L1, · · · , LSL
are not independent. Figure 6

shows the normalized histograms of the duration of the first six sticks, D1, · · · , D6. The
similarity between them suggests that D1, · · · , DST

are identically distributed random
variables. The estimated mean to these variables is 0.2 seconds. Figure 7 show the
histograms of the duration of the first six slips, H1, · · · , H6 and, again the similarity
between them suggests that H1, · · · , HSL

are identically distributed random variables.
The estimated mean to these variables is 0.4 seconds.
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Figure 4: Normalized histograms constructed with 18,000 samples of the first six instants
at which the sticks begin, T1, · · · , T6

Figure 5: Normalized histograms constructed with 18,000 samples of the first six instants
at which the slips begin, L1, · · · , L6
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Figure 6: Normalized histograms constructed with 18,000 samples of the duration of the
first six sticks, i.e., random variables D1, · · · , D6.

Figure 7: Normalized histograms constructed with 18,000 samples of the duration of the
first six slips, i.e., random variables H1, · · · , H6.
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5 Conclusions

Considering that the average of the number of sticks is µ̂ST
= 16.71 and the average

of the stick duration is µ̂D = 0.20 seconds, we compute the average of the total stick
duration as µ̂ST

× µ̂D = 3.34. This value represents one third of the the duration ta. The
the average of the total slip duration is two thirds of the the duration ta. The simulations
performed in the paper considered just one value to the friction coefficient, µ, and to the
parameter λ. To make a more complete analysis, we consider that it is important to verify
the influence of λ and µ. This is an ongoing work, and there are still many investigation to
perform. For instance, a robust optimization to maximize the performance of the drilling
process considering the uncertainties in the friction model.
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