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1 Introduction

Fuzzy set theory introduced by Zadeh in 1965 has been applied to many fields [3]. Due
to the increase in the complexity of real problems mainly related to insufficient knowledge
of the problem domain, there exist some uncertainties to provide preferences over the ob-
jects modelled by expert systems. As a natural extension, intuitionistic fuzzy logic express
mathematical support to model uncertainty of events in many practical situations. Over
the large group of operators provided by Atanassov’s Intuitinistic Fuzzy Logic (A-IFL) [1],
necessity and possibility operators are considered in order to study their proprieties which
are also valid to the classes of triangular (co)norms (t-conorms).

2 Intuitionistic Fuzzy Logic

An intuitionistic fuzzy set (A-IFS) AI in a non-empty universe X , expressed as

AI = {(x, (µAI
(x), νAI

(x))) : x∈X , µAI
(x) + νAI

(x))≤1},

extending a fuzzy set AI = {(x, µAI
(x), 1−µAI

(x)) : x∈X}, since the non-membership
degree (nMD) νAI

(x) of an element x ∈ X is less, at most equal to its complement, the
membership degree (MD) µAI

(x). So, it does not necessarily equal to one [1].
Let Ũ ⊂ [0, 1] × [0, 1], Ũ = {x̃ = (x1, x2) ∈ Ũ : x1 + x2 ≤ 1} be the set of all pairs

of MDs and nMDs with the order relation x̃ ≤Ũ ỹ given by x1 ≤ y1 and x2 ≥ y2 such

that 0̃ = (0, 1) ≤Ũ x̃ and 1̃ = (1, 0) ≥Ũ x̃, for all x̃, ỹ ∈ Ũ . The intuitionistic fuzzy
connectives named as negation, necessity and possibility and defined by functions
NI ,�,♦ : Ũ → Ũ , respectively given by the expressions [3]:

NI(x̃) = (x2, x1), �(x̃) = (x1, 1− x1) and ♦(x̃) = (1− x2, x2),∀x̃ = (x1, x2) ∈ Ũ .(1)
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LetNI be an intitionistic fuzzy negation. By [3], for x̃ = (x̃1, . . . , x̃n) ∈ Ũn, the NI-
dual intuitionistic function of f̃ : Ũn → Ũ , denoted by f̃NI

: Ũn → Ũ , is given
by:

f̃NI
(x̃) = NI(f̃(NI(x̃1), . . . , NI(x̃n))). (2)

By [2], an automorphism φ : Ũ → Ũ is a bijective, strictly increasing function: x̃ ≤ ỹ
iff φ(x̃) ≤ φ(ỹ), ∀x̃, ỹ ∈ Ũ . For all x̃ = (x̃1, . . . , x̃n) ∈ Ũn, the φ-conjugate intuitionistic
function of f̃ , denoted by f̃φ : Ũn → Ũ , is given by:

f̃φ(x̃) = φ−1(f̃(φ(x̃1), . . . , φ(x̃n))). (3)

Let T ∈ {TP , TM , TL} be an intuitionistic fuzzy t-norm and S ∈ {SP , SM , SL} be an
intuitionistic t-conorm such that TP , TM , TL, SP , SM , SL : Ũ2 → Ũ are defined as follows:

TP (x̃, ỹ) = (x1y1, x2 + y2 − x2y2) SP (x̃, ỹ) = (x1 + y1 − x1y1, x2y2)
TL(x̃, ỹ) = (max(0, x1 + y1 − 1),min(1, x2 + y2))

SL(x̃, ỹ)) = (min(1, x1 + y1),max(0, x2 + y2 − 1))

TM ((x̃, ỹ)) = (min(x1, x2),max(x2, y2)) SM (x̃, ỹ) = (max(x1, y1),min(x2, y2))

Proposition 2.1. If NI is the function in Eq.(1a), for all x̃, ỹ ∈ Ũ , it holds that:

(� ◦ S)NI
(x̃, ỹ) = SNI

(♦(x̃),♦(ỹ)) (� ◦ T )NI
(x̃, ỹ) = TNI

♦(x̃,♦(ỹ)) (4)

(♦ ◦ S)NI
(x̃, ỹ) = SNI

(�(x̃),�(ỹ)) (♦ ◦ T )NI
(x̃, ỹ) = TNI

�(x̃,�(ỹ)) (5)

Proposition 2.2. If φ : Ũ → Ũ is an automorphism, for all x̃, ỹ ∈ Ũ , the following holds:

(� ◦ S)φ(x̃, ỹ) = Sφ(�(x̃),�(ỹ)) (� ◦ T )φ(x̃, ỹ) = T φ�(x̃,�(ỹ)) (6)

(♦ ◦ S)φ(x̃, ỹ) = Sφ(♦(x̃),♦(ỹ)) (♦ ◦ T )φ(x̃, ỹ) = T φ♦(x̃,♦(ỹ)) (7)

3 Conclusion

The operators given as the NI -dual intuitionistic function and the φ-conjugate intu-
itionistic function of both intuitionistic fuzzy t-norm and t-conorm are preserved by the
necessity and possibility connectives in the A-IFL. Other operators as robustness and
correctness have been studied in further works [2].
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