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Abstract. This work is aimed at the combination of the Differential Evolution algorithm
and the likelihood method for the estimation of radiative properties and construction of
confidence regions of the parameters estimates. Two cases with different levels of measu-
rement error are employed, and the results indicate that the approach is adequate for the
construction of confidence regions in the radiative transfer inverse problem considered. The
results also demonstrate that with increasing measurement errors the traditionally employed
elliptical confidence region might lead to poor approximations in this problem.
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1 Introduction

The analysis of direct and inverse radiative transfer problems in participating me-
dia has several practical applications, including optical tomography, computerized tomo-
graphy, hydrologic optics and radiative properties estimation [1, 2]. The inverse problem
is classically formulated through the Maximum Likelihood approach, leading to an objec-
tive function to be minimized. For the optimization problem, even though gradient based
methods have been successfully employed in several contexts, such as the Levenberg-
Marquardt method, stochastic methods have gained popularity with the improvement in
computational speed of modern computers, as reviewed in [2].

These stochastic algorithms, in general, mimic some natural optimization behaviors
found in nature and are designed to find an approximation of the global optimum of a
given objective function through extensive calculation at several points. These algorithms
are specially attractive for high dimensional problems and objective functions with several
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local minima, as they are not very sensitive to the initial parameters guesses, contrary to
gradient based methods that might converge to a local minimum close to the initial guess
[2]. The main drawback generally seen in these methods is the high number of function
evaluations needed, but Schwaab and co-workers [3] have shown that these solution points
generated during the iterative procedure can actually be employed for the construction
of more reliable confidence regions of the parameters estimates in comparison with the
traditionally employed elliptical confidence region, which might constitute a very poor
approximation in nonlinear inverse problems [4].

This work is aimed at the inverse radiative transfer problem solution with the stochastic
method known as the Differential Evolution algorithm [5] for the estimation of the optical
thickness, single scattering albedo and diffuse reflectivity coefficients in one-dimensional
participating media, and construction of the confidence regions of the sought parameters
through the likelihood method. The results are critically compared against the frequently
used elliptical confidence region for different levels of measurement error.

2 Problem Formulation and Solution Methodology

Consider a one-dimensional participating medium with boundaries at τ = 0 and τ = τ0
that reflect diffusely the radiation that comes from inside the medium. The boundary
surfaces are subjected to the incidence of radiation originated at external sources with
intensities F1 and F2 at τ = 0 and τ = τ0, as shown in Figure 1.

Figure 1: Schematic representation of the one-dimensional participating medium.

The mathematical model for the interaction of the radiation with the participating
medium considering no emission, isotropic scattering and azimuthal symmetry is given by
the linear version of the Boltzmann equation [1], given below in its dimensionless form:

µ
∂I(τ, µ)

∂τ
+ I(τ, µ) =

ω

2

1∫
−1

I(τ, µ′)dµ′, 0 < τ < τ0, −1 ≤ µ ≤ 1 (1a)
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I(0, µ) = F1 + 2ρ1

1∫
0

I(0,−µ′)µ′dµ′, µ > 0 (1b)

I(τ0, µ) = F2 + 2ρ2

1∫
0

I(τ0, µ
′)µ′dµ′, µ < 0 (1c)

where I represents the radiation intensity, τ is the optical variable, µ is the cosine of
the polar angle θ (angle formed between the radiation beam and the τ axis), ω is the
single scattering albedo, and ρ1 and ρ2 are the diffuse reflectivities at τ = 0 and τ = τ0,
respectively. For the solution of Eqs. (1a-1c) the polar angle domain is discretized and
the integral term on the RHS of Eq. (1a) is substituted by a gaussian quadrature, leading
to a system of ODE´s which are numerically solved through the NDSolve routine of the
Mathematica software, under automatic absolute and relative error control, with iterative
forward and backward sweeps (from τ = 0 to τ = τ0, and from τ = τ0 to τ = 0) until
convergence is achieved. The Mathematica routine then provides an interpolation function
object that approximates the τ and µ behaviors of the solution in a continuous form in
such a way that the calculated intensity I can be obtained in any desired position and
polar angle.

3 Inverse Analysis

Suppose the following vector of radiative properties is unknown:

Z = {τ0, ω, ρ1, ρ2} (2)

Nonetheless, experimental data on the radiation that leaves the medium may be available.
For instance, these measurements can be acquired in different polar angles with external
detectors located at τ = 0 and τ = τ0, here denoted by Yi, i = 1, 2, . . . , Nd, where Nd is
the number of experimental measurements available.

Considering the measurement errors related to the dataY are additive and have normal
distribution with zero mean and covariance matrix given by W, the probability density
for the occurrence of the measurements Y with the given parameters values Z can be
expressed as [6]:

π(Y|Z) = (2π)−Nd/2|W|−1/2 exp

{
−1

2
[Y − I(Z)]T W−1 [Y − I(Z)]

}
(3)

where I is the vector containing the radiation intensities calculated with the direct problem
solution employing the parameters values Z, at the same positions and polar angles of the
measurements Y.

The inverse problem solution can be seen as the values of Z that maximizes the li-
kelihood function given by Eq. (3), which can be achieved with the minimization of the
argument of the exponential function, leading to the following objective function:

S(Z) = [Y − I(Z)]T W−1 [Y − I(Z)] (4)
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Hence, the minimization of the objective function given by Eq. (4) leads to the sought
estimates of the radiative properties, hereafter called Ẑ.

Due to the unavoidable presence of experimental errors, it is necessary to assess the
uncertainty of the parameters estimates. Considering a second-order Taylor expansion of
the objective function at the estimate Ẑ, and considering the Gauss approximation for the
Hessian matrix, one obtains the following expression for the covariance matrix related to
the parameters estimates [6]:

V =
[
JTW−1J

]−1
(5)

where J is the Jacobian matrix, whose elements are given by:

Jij =
∂Ii
∂Zj

, i = 1, 2, . . . , Nd, j = 1, 2, . . . , Np (6)

where Np is the number os parameters, i.e. the dimension of vector Z.

Equation (5) is traditionally employed to define the estimates confidence region, with:

S(Z)− S(Ẑ) =
[
Z− Ẑ

]T
V−1

[
Z− Ẑ

]
≤ χ2

Np
(7)

where χ2
Np

is the value of the chi-square distribution with Np degrees of freedom for a

given probability (confidence level), defining a hyper-ellipsoid in the parameter space.

Even though this approach is often employed for the construction of confidence regions,
it should be highlighted that in nonlinear inverse problems, even when the experimental
deviations follow the normal distribution, the parameters uncertainties do not necessa-
rily are normally distributed. Hence, the elliptical confidence region might be a poor
approximation [3, 4].

Alternatively, considering the objective function is a random variable that follows the
chi-square distribution with Nd −Np degrees of freedom, the following expression can be
obtained employing the F distribution [3, 4]:

S(Z) ≤ S(Ẑ)

(
1 +

Np

Nd −Np
Fα
Np,Nd−Np

)
(8)

which defines a confidence region, known as likelihood confidence regions, for the estimates
Ẑ with α confidence level.

Even though the confidence region constructed with Eq. (8) is also an approximation
for nonlinear inverse problems, it does not require it to be elliptical, leading to very good
approximations of the true confidence regions according to [4]. The main drawback of this
method is that it requires a very large number of points, and, therefore, objective function
evaluations, specially for high dimension problems. The main idea brought by Schwaab
and co-workers [3] is to minimize this difficulty by employing stochastic methods for the
optimization procedure, as these algorithms generally perform a high number of objective
function evaluations. In this work, the Differential Evolution algorithm [5] is employed for
this purpose.
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4 Results and Discussion

In order to evaluate the combination of the likelihood method and the Differential
Evolution algorithm for the construction of the estimates confidence regions against the
traditionally employed elliptical confidence regions, experimental data with different me-
asurement error levels were simulated with:

Yi = Ii(Zexact) + εi, εi ∼ N(0, σe), i = 1, 2, . . . , Nd (9)

The test case considered in this work is Zexact = {1.0, 0.5, 0.5, 0.5}, where Nd = 20
measurements were considered, half acquired at τ = 0 and half at τ = τ0, and two different
sets of experimental data were simulated with two measurement error levels, σ = 0.002
and σ = 0.01, in order to evaluate the accuracy of the elliptical confidence region with
respect to the magnitude of the experimental deviations in this problem. Figures 2(a,b)
depict the experimental data for both scenarios.

(a) (b)

Figure 2: Simulated experimental data for (a) σe = 0.002 and (b) σe = 0.01.

In the Differential Evolution algorithm it was considered the value 0.8 for the weighting
factor and 0.9 for the crossover constant, as recommended in [5]. The population size was
considered with 320 individuals, much more than the recommendation of ten times the
number of parameters, in order to yield a very diversified population and maximize the
region where the objective function is evaluated. Finally, 150 generations were considered.

The joint confidence region for this problem is a four-dimensional region. In order to
compare the elliptical and the likelihood confidence regions, the results are presented in
two dimensions, showing τ0 together with ω and ρ1 together with ρ2, which are, in fact,
sections of the actual 4D confidence region.

Figures 3(a,b) show the constructed elliptical confidence region (red line) together
with the sampled likelihood confidence region (blue dots), constructed with the objective
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function evaluations performed within the Differential Evolution procedure and Eq. (8),
for the case with very small measurement errors (σe = 0.002). These results clearly show
that in this case both confidence regions are very similar, indicating that the elliptical
region may offer a reliable approximation.

(a) (b)

Figure 3: Estimated elliptical (red line) and likelihood (blue dots) confidence regions for (a) τ0×ω

and (b) ρ1 × ρ2. Experimental data with σe = 0.002.

Now, Figures 4(a,b) present similar results for the case with σe = 0.01. One may first
observe that both confidence regions are wider than in the previous case due to higher
measurements deviations, as expected. But now the likelihood confidence region is quite
different from the elliptical one, which clearly yielded underestimated results, i.e. the
elliptical confidence region is unable to identify a relatively large region of parameters
values which in fact leads to similar model fits. These results demonstrate that when the
experimental errors increase the traditionally employed elliptical confidence region fails
to yield reliable results for the inverse radiative transfer problem. Hence, the likelihood
method should be preferred, or if the elliptical confidence region is adopted, a previous
study should be carried out in order to assess which levels of measurement errors yield
acceptable results.

5 Conclusions

This work provided the estimation of radiative properties in one-dimensional partici-
pating media, employing a combination of the Differential Evolution algorithm with the
likelihood method for the construction of confidence regions, making use of the several
objective function evaluations performed during the optimization procedure to construct
more reliable confidence regions in comparison with the traditionally employed elliptical
confidence region.
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(a) (b)

Figure 4: Estimated elliptical (red line) and likelihood (blue dots) confidence regions for (a) τ0×ω

and (b) ρ1 × ρ2. Experimental data with σe = 0.01.
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