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1 Introduction

A combinatorial interpretation of the Pell numbers was introduced by Benjamim, Plott
and Sellers in [1] and Brigss, Little and Sellers in [3], stated and proved q−analogues of
several Pell identities via weighted tilings. Suppose that there are a ≥ 1 different colors
of squares, s1, s2, · · · sa, and b ≥ 1 different colors of dominoes, d1, d2, · · · , db. Let wq(t) be
the q−weight of these colored tiles defined as:

wq(t) =

{
qij , if t is a dj colored domino at position (i, i+ 1);

qi(j−1), if t is an sj , colored square at position i;

and a corresponding generating function for Pell tilings of a n−board as follows:

Pn+1(a, b; q) =
1− qa(n+1)

1− qn+1
Pn(a, b; q) + qn

1− qbn

1− qn
Pn−1(a, b; q),

with inicial conditions P0(a, b; q) = 1, P1(a, b; q) = 1−qa
1−q .

The nth Jacobsthal number, denoted by an is defined recursively by a0 = 0, a1 = 1,
and an = an−1+2an−2, for all n ≥ 2. Following the ideas of [1], an can be interpreted as the
number of tilings of a 1×n board using white squares, black dominoes, and gray dominoes,
called number of Jacobsthal tilings of lenght n. The nth Jacobsthal-Lucas number, denoted
by jn is defined recursively by j0 = 2, j1 = 1, and jn = an+1 + 2an−1, for all n ≥ 2. The

1elen.spreafico@ufms.br
2kenia@ifsp.edu.br,
3cecilia.andrade@ifsp.edu.br

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

Trabalho apresentado no CNMAC, Gramado - RS, 2016.

DOI: 10.5540/03.2017.005.01.0225 010225-1 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0225


2

Jabosthal-Lucas number can be intepreted as the number of bracelets of a 1 × n board
using white squares, black dominoes, and gray dominoes.

For the purposes of this paper, we will focus on the following Jacobsthal identities
presented in [4].

Theorem 1.1. For all n ≥ 0,

an =
∑
r≥0

(
n− r
r

)
2r. (1)

Theorem 1.2. For all n ≥ 0,

2
n∑
i=0

ai = an+2 − 1. (2)

Theorem 1.3. For all n ≥ 0,

a2n+1 =
n∑
i=0

2n−ia2i. (3)

Theorem 1.4. For all n ≥ 0,

aman+1 + 2anam−1 = am+n+1. (4)

Theorem 1.5. For all n ≥ 1,

a2n = an+1an−1 + (−1)n2n. (5)

Theorem 1.6. For all n ≥ 0,

jn =
∑
r≥0

n

n− r

(
n− r
r

)
2r. (6)

Theorem 1.7. For all n ≥ 0,

2

n∑
i=0

ji = jn+2 − 1. (7)

Theorem 1.8. For all n ≥ 0,

j2n+1 =
∑
i≥0

2n−ij2i. (8)

The main goal of this work is to state and prove the q−analogues for identities above,
using the combinatorial techniques presented in [1], [2] and [3].
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2 The q-Jacobsthal Numbers

The q−Jacobsthal numbers Jn(q) are defined by

Jn+1(q) = Jn + (q + q2n)Jn−1;n ≥ 1,

with inicial conditions J0(q) = J1(q) = 1. Clearly, the q-Jacobsthal number Jn(q) coincides
with the values an when q = 1. We define the weight of the tile t as follows:

w(t) =


i, if t is a gray domino at position (i, i+ 1),
2i, if t is a black domino at position (i, i+ 1),
0, if t is a white square at position i.

Let Tn be the set of all tilings of an n-board with white squares, black dominoes and
gray dominoes. Then, for any tilings T ∈ Tn define the q-weight of T by

wq(T ) =
∏
t∈T

qw(t),

and define

J̃n(q) =
∑
T∈kn

wq(T ).

Is easy to see that Jn(q) = J̃n(q). For example with n=3, J̃3(q) = 1 + q + 2q2 + q4 =
J2(q) + (q2 + q4)J1(q) = J3(q).

3 Some Analogues of q-Jacobsthal Identities

Given the definition of the q−Jacobsthal numbers Jn(q) above, we now state the
q−analogue of theorems 1.1 to 1.8 and prove some identities via these weighted tilings.
We start defining the polynomial pj,k,l in q generated as coefficient of xjykzl in the ex-
pansion of (x+ y + z)j+k+l with inversions yx = q2xy, zx = q2xz, zy = qyz. For n=4, the
contributions for the coefficient of xy2z comes from the factors (xy2z + xyzy + xzy2) +
(yxyz + yxzy + y2xz + y2zx+ yxyz + yxzy) + (zy2x+ zyxy + zxy2) in the expansion of
(x+ y + z)4. So using the inversions above we obtain

(
(1 + q + q2) + (q2 + q3 + q4 + q6 + q2 + q3) + (q8 + q6 + q4)

)
xy2z

=

(
q6

1− q3

(1− q)
+ q

1− q6

(1− q)
+

1− q6

(1− q2)

)
xy2z

= p1,2,1xy
2z.

Let Tj,k,l be the set of tilings of n-board using exactly j black dominoes, k gray
dominoes and l white squares, where n = 2j+2k+ l. For each T ∈ Tj,k,l we will associated
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a sequence, δT , replacing each black domino with an x, each gray domino with a y, and
each white square with a z. This sequence is in the set Sxj ,yk,zl of all sequences with j
characters equal to x, k characters equal to y and l characters equal to z. Thus, for each
sequence in δ ∈ Sxj ,yk,zl there is an associated tiling Tδ ∈ Tj,k,l.

Now, we start the process of computing the weight of generic tiling T ∈ Tj,k,l. Firstly
note that the tiling minimum weight, Tmin ∈ Tj,k,l, corresponds a sequence δmin given by

δmin = xxx · · ·xx︸ ︷︷ ︸
j

yyy · · · yy︸ ︷︷ ︸
k

zzz · · · zz︸ ︷︷ ︸
l

.

This assertion is a consequence of following statements:
1. the weight of a black dominoes followed by a gray dominoes is less than that of a

gray dominoes followed by a black dominoes.
2. the weight of a black dominoes followed by a white square is less than that of a

white square followed by a black dominoes.
3. the weight of a gray dominoes followed by a white square is less than that of a white

square followed by a gray dominoes.
Furthermore, the q-weight of Tmin is given by

q2.
∑j

i=1 2j−1+
∑k

m=1 2j+2m−1 = q2j
2+2kj+k2 .

We want to study the difference between the q-weight of generic tiling T ∈ Tj,k,l and
the q-weight of minimum tiling Tmin.

Given a sequence δ ∈ Sxj ,yk,zl we consider, as before, the inversions yx = q2xy, zx =
q2xz and zy = qyz.

For example, the sequence y2zxyx, is associated to the tiling T ∈ T2,3,1. In this case,
we have Tmin with minimum weight q29 associated to the sequence x2y3z.. Since

y2zxyx = yyzxyx = q2yyxzyx = q3yyxyzx = q5yyxyxz = q7yyxxyz

= q9yxyxyz = q11yxxyyz = q13xyxyyz = q15x2y3z,

it follows that
w(T ) = q15w(Tmin) = q15q29 = q44.

Then the weight w(T ) is given in terms of w(Tmin) by a multiplication of a power of
q.

Consider the sequence associate to the tiling of minimum weight q13, x2yz, which
corresponds to the tiling with two black dominoes, one gray domino and one white square.
Through the inversion of characters x, y and z, we obtain:

xxyz = x2yz;xxzy = qx2yz;xyxz = q2x2yz;xzxy = q3x2yz;xyzx = q4x2yz; yxxz =
q4x2yz;xzyx = q5x2yz; zxxy = q5x2yz; yxzx = q6x2yz; zxyx = q7x2yz; yzxx = q8x2yz;
zyxx = q9x2yz.

Thus, the polynomial 1 + q+ q2 + q3 + 2q4 + 2q5 + q6 + q7 + q8 + q9 corresponds to the
sequence x2yz. This polynomial tell us the power of q to be multiplied by the minimum
weight. So,
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(1 + q + q2 + q3 + 2q4 + 2q5 + q6 + q7 + q8 + q9)q13

is the weight generating function of tilings with two black dominoes, one gray domino and
one white square.

Note that, in the expansion of the polynomial (x + y + z)4, the coefficient of x2yz is
exactly the polynomial corresponding to the sequence x2yz.

Furthermore, the polynomial pj,k,l generated as coefficient of xjykzl in the expansion
of (x + y + z)k+j+l determines the weight generating function of tilings with exactly j
black dominoes, k gray dominoes and l white squares. Thus

∑
T∈Tk,j,l

wq(T ) =
∑

δ∈S
xk,yj ,zl

wq(Tδ)

= w(Tmin)pj,k,l

= q2j
2+2kj+k2pj,k,l

and we provide an important lemma.

Lemma 3.1. The generating function for tilings with exactly j black dominoes, k gray
dominoes and l white squares is given by

q2j
2+2kj+k2pj,k,l.

Now, we can prove the following q-analogue of Theorem (1.1).

Theorem 3.1. (q-analogue of Theorem (1.1) ) For all n ≥ 0,

Jn(q) =

bn−1
2 c∑

r=0

qr
2

r∑
j=0

qj
2
pj,r−j,n−2r.

Proof: The left-hand side q-counts the set of all Jacobsthal tilings of an n-board.
Consider the tilings of n-board with exactly r = j + k dominoes, j black dominoes and k
gray dominoes. These tilings must have n− 2r white squares. Applying Lemma (3.1) we
obtain

q2j
2+2kj+k2pj,k,n−2r.

By taking k = r − j, we obtain

q2j
2+2j(r−j)+(r−j)2pj,r−j,n−2r,

that is,

qr
2+j2pj,r−j,n−2r.
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Summing over all possible j and r

Jn(q) =

bn−1
2 c∑

r=0

r∑
j=0

qr
2+j2pj,r−j,n−2r.

as desired.
In the same way, is possible to determine an analogue of Theorem (1.6). To do this,

we need define Jmn (q) as m-shifted tilings with exactly j black dominoes, k gray dominoes
and l white squares, and then we obtain the following results.

Lemma 3.2. The generating function for m-shifted tilings with exactly j black dominoes,
k gray dominoes and l white squares is given by

qm(2j+k)2j2+2kj+k2pj,k,l.

Theorem 3.2. (q-analogue of Theorem (1.6) ) For all n ≥ 0,

Jn(q) + (qn + q2n)J1
n−2(q) =

bn−1
2 c∑

r=0

qr
2

r∑
j=0

qj
2 [
pj,r−j,n−2r + qn−r+j+1×

×
{
pj,r−j−1,n−2r + qn+6j+1pj−1,r−j,n−2r

}]
.

Using the same techniques described above, we can state and prove q−analogues of
theorems 1.2 through 1.8.

Theorem 3.3. (q-analogue of Theorem (1.2)) For all n ≥ 0,

n∑
i=0

(qi+1 + q2(i+1))Ji(q) = Jn+2(q)− 1. (9)

Theorem 3.4. (q-analogue of Theorem (1.3)) For all n ≥ 0,

J2n+1(q) =
n∑
i=0

J2i(q)

(n−i)∏
j=1

(q2(i+j) + q4(i+j)). (10)

Theorem 3.5. (q-analogue of Theorem (1.4)) For all n ≥ 0,

Jm(q)Jmn+1(q) + (qm + q2m)Jm+1
n (q)Jm−1(q) = Jm+n+1(q). (11)

Theorem 3.6. (q-analogue of Theorem (1.5)) For all n ≥ 1,

(Jn(q))2 =


Jn+1(q)Jn−1(q)−

(
q2p−1 + q2(2p−1)

) p−1∏
j=1

(
q2j−1 + q2(2j−1)

)2
, if n=2p-1

Jn+1(q)Jn−1(q) +

p∏
j=1

(
q2j−1 + q2(2j−1)

)2
, if n=2p.

(12)
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Theorem 3.7. (q-analogue of Theorem (1.7)) For all n ≥ 1,

Jn+2(q) + (qn+2 + q2(n+2))J1
n(q)− 1 = (qn+2 + q2(n+2))

{
1 +

n∑
k=2

(qk + q2k)J1
k−1(q)

}

+
n∑
k=0

(qk+1 + q2(k+1))Jk(q).

(13)

Theorem 3.8. (q-analogue of Theorem (1.8)) For all n ≥ 1,

J2n+1(q) + (q2n+1 + q2(2n+1))J1
2n(q) = J0(q)

n∏
j=1

(q2j + q4j)+

n∑
i=1

J2i(q)
n−i∏
j=1

(q2i+2j + q2(2i+2j)) + (q2n+1 + q2(2n+1))J1
2i−1(q)

n−i∏
j=1

(q2i+2j−1 + q2(2i+2j−1))

 .
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