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Abstract. In this work we talk about some patterns on partitions considered by the 1st

Rogers-Ramanujan Identity. Looking for a new bijective proof for it, we have studied parti-
tions into parts congruent to ±1 (mod 5) and have created a two-line matrix representation
for them. By adding up their second line elements, we have obtained the number of parts
of the related partitions. We classify the partitions according to the sum on the second row
of the matrix associated to it and organize the data on a table, obtaining some partition
identitities.
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1 Introduction

One of the most known identities in Partition Theory, due to Srinivasa Ramanujan
(at the same time and independently, Leonard Rogers), called the 1st Rogers-Ramanujan
Identity, says that the number of partitions of a given n into parts congruent to ±1
(mod 5) is equal to the number of partitions of n into 2-distinct parts. An analitic proof
is presented in [1] and in [2], there is a bijective proof for this identity, although it is not
simple. So, as we found in [3] a two-line matrix representation for partitions into 2-distinct
parts, if we could get a matrix representation for the other set of partitions, maybe we
could get a bijective proof for the 1st Rogers-Ramanujan Identity. Even though we are
not able to get this proof yet, we got other results provided by this matrix representation.
Some of them are presented in this work.
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2 Some Results

We start by showing a new two-line matrix representation for partitions whose parts
are congruent to ±1 (mod 5).

Theorem 2.1. The number of partitions of n into parts congruent to ±1 (mod 5) is equal
to the number of two-line matrices

A =

(
c1 c2 · · · cs
d1 d2 · · · ds

)
, (1)

whose entries satisfy the following relations:

cs = cs−1 = 0, (2)

dt ≥ 0, (3)

c2i−1 = 5d2i+1 + 5d2i+3 + . . . , (4)

c2i = 5
d2i+2

4
+ 5

d2i+4

4
+ . . . , (5)

n =
∑

ct +
∑

dt. (6)

Proof. Let Rk be the k-th natural number congruent to ±1 (mod 5), i.e.,

R2i−1 = 5 · (i− 1) + 1

R2i = 5 · (i− 1) + 4

Given a partition of n into parts congruent to ±1 (mod 5), let us suppose Rs is the
largest part of the partition, with s an even number, saying,

n = j1 ·R1 + j2 ·R2 + · · ·+ js ·Rs, where jk =

{
dk for odd k
dk
4 for even k

= j1(5 · 0 + 1) + j2(5 · 0 + 4) + j3(5 · 1 + 1) + j4(5 · 1 + 4) + · · ·+ js(5 ·
(s− 2

2

)
+ 4)

= 5(0 · j1 + 1 · j3 + 2 · j5 + · · ·+
(s− 2

2

)
· js−1) + (j1 + j3 + j5 + · · ·+ js−1)

+ 5(0 · j2 + 1 · j4 + 2 · j6 + · · ·+
(s− 2

2

)
· js) + 4(j2 + j4 + j6 + · · ·+ js)

It is easy to see that we can associate the partition above to an unique matrix of type
(1), satisfying conditions (2) to (6).

Conversely, by summing the entries of any matrix of type (1) satisfying the same
conditions we get an unique partition of n into parts congruent to ±1 (mod 5).

The case with s an odd number is analogous.
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The second row of those matrices above describes the number of parts of the partition
associated to it. For a fixed n, we classify its partitions into parts congruent to ±1 (mod 5)
according to the sum of entries di, for odd i, and di

4 , for even i, on the second row of the
matrix associated to each one of them. By counting the appearance of each number in
these sums, we can organize the data on a table, which is presented below. The entry in
line n and column n − j is the number of times j appears as sum of the entries of the
second row in type (1) matrices.

Table 1: Table from the characterization given by Theorem (2.1)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 1
2 1 0
3 1 0 0
4 1 0 0 1
5 1 0 0 1 0
6 1 0 0 1 0 1
7 1 0 0 1 0 1 0
8 1 0 0 1 0 1 1 0
9 1 0 0 1 0 1 1 0 1
10 1 0 0 1 0 1 1 0 2 0
11 1 0 0 1 0 1 1 0 2 0 1
12 1 0 0 1 0 1 1 0 2 1 2 0
13 1 0 0 1 0 1 1 0 2 1 2 1 0
14 1 0 0 1 0 1 1 0 2 1 2 2 0 1
15 1 0 0 1 0 1 1 0 2 1 2 2 0 3 0
16 1 0 0 1 0 1 1 0 2 1 2 2 1 4 0 1
17 1 0 0 1 0 1 1 0 2 1 2 2 1 4 1 2 0
18 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 3 2 0
19 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 3 4 0 1
20 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 0 4 0
21 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 1 6 0 1
22 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 2 7 2 3 0
23 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 2 7 4 4 2 0
24 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 2 8 5 5 6 0 1
25 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 2 8 5 6 8 0 5 0
26 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 2 8 5 7 9 2 9 0 1
27 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 2 8 5 7 9 4 11 3 3 0
28 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 2 8 5 7 10 5 12 7 5 3 0
29 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 2 8 5 7 10 5 13 9 6 9 0 1
30 1 0 0 1 0 1 1 0 2 1 2 2 1 4 2 4 5 2 8 5 7 10 5 14 10 9 14 0 6 0

Definition 2.1. Let p±1(5)(n, k) be the number of partitions of n into k parts congruent
to ±1 (mod 5) and P±1(5)(n, k) the set of all the partitions counted by p±1(5)(n, k). So,
|P±1(5)(n, k)| = p±1(5)(n, k).

By observing the table above we can see that the columns become constant from certain
values of n on. This is summarized next.

Proposition 2.1. For all n ≥ 2 and i ≥ 0 we have

(i) p±1(5)(4n− 2, n− 1) = p±1(5)(4n− 2 + i, n− 1 + i)

(ii) p±1(5)(4n, n) = p±1(5)(4n+ i, n+ i)

(iii) p±1(5)(4n, n− 1) = p±1(5)(4n+ i, n− 1 + i)

The following result was also suggested by the table.
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Proposition 2.2. For all n ≥ 1,

p±1(5)(5n− 3, 2) = p±1(5)(5n+ 3, 2) =
⌊n+ 1

2

⌋
.

Proof. Let (λ1, λ2) be a partition of 5n−3 into two parts congruent to ±1 (mod 5). Note
that both parts need to be congruent to 1 (mod 5). On the other hand, a partition (µ1, µ2)
of 5n+ 3 into two parts congruent to ±1 (mod 5) has to have both of them congruent to
−1 (mod 5). Clearly, (λ1 + 3, λ2 + 3) leads us to a partition of 5n+ 3 and (µ1− 3, µ2− 3)
to a partition of 5n− 3.

To prove the second equality, let us consider a partition (µ1, µ2) of 5n + 3, that is,
(5r − 1) + (5s − 1) = 5n + 3, with r, s ≥ 1, which is the same as finding the number of
solutions of the previous equation, without counting the order. Or, r + s = n+ 1.

Then we have p±1(5)(5n+ 3, 2) = p(n+ 1, 2) =
⌊
n+1
2

⌋
.

3 Main Theorem

Frequently, in our work, we note the appearance of Triangular Numbers. By observing
the fourth diagonal, they also show up in some partitions into four parts. For those ones,
we got a closed formula to count them.

Theorem 3.1. Being Tn the n-th triangular number, for all n ≥ 0,

(i) p±1(5)(10n, 4) = 2 ·
n−1∑
i=1

Ti + Tn =
(n+ 1)n(2n+ 1)

6
;

(ii) p±1(5)(10n+ 5, 4) = 2 ·
n∑
i=1

Ti =

(
n+ 2

3

)
.

In order to prove the Main Theorem, we need some other statements, as follows. Some
proofs we omit.

Lemma 3.1. For all n ≥ 0,

(i) The number of partitions of 10n + 1 into three parts congruent do ±1 (mod 5) whose
difference between the two largest parts is less than 5, is equal to n;

(ii) The number of partitions of 10n + 6 into three parts congruent do ±1 (mod 5) whose
difference between the two largest parts is less than 5, is equal to n+ 1.

Sketch of the proof: (i) As we always have two parts congruent to 1 (mod 5) and one
to 4 (mod 5), we can classify the partitions according to the position occupied by its part
congruent to 4 (mod 5). Then we have three possible values for differences between the
two largest parts: 0, 2 and 3. In each case, we study the number of solutions of a equation
into 2 variables and it gives us the desired result. Item (ii) has an analogous proof.

Proposition 3.1. For all n ≥ 0,

(i) p±1(5)(10n+ 1, 3)− p±1(5)(10n− 4, 3) = n;
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(ii) p±1(5)(10n+ 6, 3)− p±1(5)(10n+ 1, 3) = n+ 1.

Proof. We prove item (i), the other one being similar.
Let us write P±1(5)(n, k) = P λ1−λ2≥5±1(5) (n, k) ∪ P λ1−λ2<5

±1(5) (n, k), where P λ1−λ2≥5±1(5) (n, k) is
the subset of partitions whose difference between the two largest part is equal to or greater
than 5 and P λ1−λ2<5

±1(5) (n, k), less than 5. It’s easy to see that there’s a bijection between

P λ1−λ2≥5±1(5) (10n+ 1, 3) and P±1(5)(10n− 4, 3). By Lemma (3.1), we have |P λ1−λ2<5
±1(5) (10n+

1, 3)| = n, and the theorem is proved.

From Proposition (3.1), we get the following corollary.

Corollary 3.1. For all n ≥ 0,

(i) p±1(5)(10n+ 1, 3) = 2Tn;

(ii) p±1(5)(10n+ 6, 3) = Tn + Tn+1.

Proof.

(i) Combining both items of Proposition 3.1 we have

p±1(5)(10n+ 1, 3) − p±1(5)(10n− 4, 3) = n (7)

p±1(5)(10(n− 1) + 6, 3) − p±1(5)(10(n− 1) + 1, 3) = n. (8)

On equations (7) and (8), if we change n by n− 1, n− 2, . . . , 2 and 1 and add all the
equations up, we get

p±1(5)(10n+ 1, 3) = 2n+ 2(n− 1) + 2(n− 3) + . . .+ 2 = 2Tn.

(ii) Combining item (i) of this corollary and Proposition 3.1, we get

p±1(5)(10n+ 6, 3) = 2Tn + (n+ 1) = Tn + Tn+1

Proposition 3.2. For all n ≥ 0,

(i) p±1(5)(10n+ 1, 3) = p±1(5)(10n+ 4, 3);

(ii) p±1(5)(10n+ 6, 3) = p±1(5)(10n+ 9, 3).

Proof. The same bijection holds for both items. As an example, we take the second one.
Note that any partition of 10n+ 6 into 3 parts congruent to ±1 (mod 5) has to have two
parts congruent to 1 (mod 5) and one part congruent to 4 (mod 5). And any partition
of 10n + 9 into 3 parts congruent to ±1 (mod 5) has to have two parts congruent to 4
(mod 5) and one part congruent to 1 (mod 5).

So, a bijection between the two sets of partitions adds 3 to the smallest part congruent
to 1 (mod 5) of any partition of 10n + 6 and subtracts 3 of the smallest part congruent
to 4 (mod 5) of any partition of 10n+ 9. Note that there may not always be the smallest
part. However, this does not affect the bijection.
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Finally, before being able to prove our Main Theorem, we need one last result.

Lemma 3.2. For all n ≥ 0 and i ≤ n,

(i) p±1(5)(10n, 4, smallest part R2i−1) = p±1(5)(10(n− (2i− 1)) + 9, 3);

(ii) p±1(5)(10n+ 5, 4, smallest part R2i−1) = p±1(5)(10(n− 2(i− 1)) + 1, 3);

(iii) p±1(5)(10n, 4, smallest part R2i) = p±1(5)(10(n− 2i) + 6, 3);

(iv) p±1(5)(10n+ 5, 4, smallest part R2i) = p±1(5)(10(n− (2i− 1)) + 1, 3).

Proof. For our purpose, the proofs we show are from the first and third items, being the
second and fourth similar.

(i) Taking a partition of 10n into 4 parts whose smallest part is R2i−1, we can write 10n as

10n = λ1 + λ2 + λ3 + 5(i− 1) + 1,

which is the same as
10n− 5(i− 1)− 1 = λ1 + λ2 + λ3.

As all parts are greater than or equal to R2i−1 = 5(i − 1) + 1, we may decrease each
λj by 5(i − 1), then counting partitions of 10(n − (2i − 1)) + 9 into 3 parts congruent to
±1 (mod 5), so

p±1(5)(10(n− (2i− 1)) + 9, 3).

(iii) Let (λ1, λ2, λ3, R2i) be a partition lying on P±1(5)(10n, 4, smallest part R2i). In the
same way we did before, we remove the part R2i, decrease the remaining congruent to 4
(mod 5) by 5(i− 1) and the congruent to 1 (mod 5) by 5i. Note that it is possible since
these last parts are at least 6.

The next table illustrates the case where n = 5 and i = 2.

Table 2: Example for Lemma 3.2.(iii) with n = 5 and i = 2.

P±1(5)(50, 4, smallest part R4) P±1(5)(16, 3)

(21, 11, 9, 9) (21, 11, 9) (11, 1, 4) (11, 4, 1)

(19, 11, 11, 9) (19, 11, 11) (14, 1, 1) (14, 1, 1)

(16, 16, 9, 9) (16, 16, 9) (6, 6, 4) (6, 6, 4)

(16, 14, 11, 9) (16, 14, 11) (6, 9, 1) (9, 6, 1)

After all the results we have presented, Theorem 3.1 becomes easy to be proved and
it goes as follows.

Proof of Theorem 3.1: Remembering that Ri is the i − th number congruent to ±1
(mod 5). We are going to classify all partitions counted by p±1(5)(10n, 4) according to its
smallest part. Note that the maximum value for this part is Rn, which could be

R2i = 5(i− 1) + 4, for i ≤
⌊
n

2

⌋
or R2i−1 = 5(i− 1) + 1, for i ≤

⌊
n+ 1

2

⌋
.
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(i) After this classification, we have

p±1(5)(10n, 4) =

bn+1
2
c∑

i=1

p±1(5)(10n, 4, smallest part R2i−1)

+

bn
2
c∑

i=1

p±1(5)(10n, 4, smallest part R2i).

By items (i) and (iii) of Lemma 3.2, this equality turns to

p±1(5)(10n, 4) =

bn+1
2
c∑

i=1

p±1(5)(10(n− (2i− 1)) + 9, 3)

+

bn
2
c∑

i=1

p±1(5)(10(n− 2i) + 6, 3).

By combining item (ii) of Proposition 3.2 and item (ii) of Corollary 3.1, we are
allowed to write

p±1(5)(10n, 4) =

n∑
i=1

p±1(5)(10(n− i) + 6, 3)

=

n∑
i=1

(Tn−i + Tn−i+1) = 2

n−1∑
i=1

Ti + Tn.

The second equality follows by Induction.

(ii) The proof is analogous to the previous one, just using items (ii) and (iv) of Lemma
3.2 and item (i) of Corollary 3.1 instead of those used before.
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