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Abstract. This paper presents a proposal of robust model based fault diagnosis in a non-
linear bioreactor, seen as a solution of an inverse optimization problem. The optimization
problem is solved using the evolutionary strategy Differential Evolution (DE). The results
indicate the suitability of this approach.
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1 Introduction

A fault in a system is a non-allowed deviation of at least one property, characteristic
or parameter, from its acceptable condition. The faults derive in degradation or even
loss of functioning in a system [1]. For this reason, the development of fault diagnosis
methods for industrial systems, which should be robust in the presence of noise or external
perturbations, is a very current topic.

Among the ways of approaching this problem, the model based methods can be found
[6]. Mathematical models allow to incorporate the faults affecting the system via a faults
vector. The determination of the faults vector, when the input and output signals of the
system are known, can be approached as the solution of an inverse optimization problem
[4].

Nonlinear bioreactors are essential technology in chemical and biochemical industries.
It is known that any disturbance in the nutrient concentrations that are involved in a
bioreactor process can generate radical changes in its performance.
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It has been recently shown that formulating fault diagnosis by an inverse problem
methodology helps obtain an appropriate balance between robustness and sensitivity [2].

In this paper , a proposal of robust model-based fault diagnosis via parameters estima-
tion in a nonlinear bioreactor is presented, through the solution of an inverse optimization
problem using the Differential Evolution algorithm.

The main contribution of this paper is the application of this method to strong nonli-
near systems as bioreactors including the diagnosis of incipient and multiple faults.

This paper is organized as follows. Section 2 will present the description of the non-
linear bioreactor and the Differential Evolution algorithm. Section 3 will be devoted to
results and numerical experiments. Finally, some conclusions are presented.

2 Materials and Methods

2.1 Description of the bioreactor model

In this subsection the model of the nonlinear bioreactor proposed by Contois in 1959 is
described. The model depicts the velocity of the growth of microorganisms and substrate
in a bioreactor using the kinetics equation of Contois [3].

Two substances are involved in the process, being ξ1 the microorganisms concentration
and ξ2 the substrate concentration. The states vector will be x = [x1, x2]

T ∈ R2 where

x1 = ξ1 (1)

x2 =
a1 ξ1 ξ2

a2 ξ1 + ξ2

The process is affected by two faults fp1 and fp2. They represent the presence of
substances that alter the concentration of microorganisms. These faults are modeled by
the terms

fp1 = Ψ1θ1, fp2 = Ψ2θ2 (2)

where θ1, θ2 ∈ R are the unknown values of the concentrations of the substances and
Ψ1,Ψ2 are functions that determine the periodical appearance of fp1 and fp2 respectively.

The model of the system, with the faults incorporated, respond to the following system
of nonlinear differential equations

ẋ1 = x2 − ux1 +Ψ1 θ1 +Ψ2 θ2 (3)

ẋ2 =
a2 x2(x

2
2 − a1 ux

2
1) + (a1 x1 − x2)

2(a4 u− a3 x2)

a1 a2 x21
x(t0) = x0

y = x1 (4)

where the concentration of microorganisms x1 is measured by a sensor; a1, a2, a3, a4 ∈ R
are model parameters and u ∈ R is the input function of the system that represents the
dilution rate, which acts as the control variable.
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Since functions Ψ1 and Ψ2 have a known behavior, the estimation of faults fp1 and
fp2 is focused in the estimation of values of θ1 and θ2. The diagnosis of the faults is carried
out by solving the optimization problem:

minF (θ̂1, θ̂2) =
∑I

t=1

[
yt(x1, x2, θ1, θ2, u)− ŷt(x̂1, x̂2, u, θ̂1, θ̂2)

]2
s.t. θ1min ≤ θ̂1 ≤ θ1max

θ2min ≤ θ̂2 ≤ θ2max

(5)

where ŷt(x̂1, x̂2, θ̂1, θ̂2, u) is the estimated output of the system at each time t that is
obtained by solving the system (5) and yt(x1, x2, θ1, θ2, u) is the real output of the system
measured at the same time t by a sensor. I is the number of measurements of the input
(u(t)) and output (y(t)) vectors.

Figure 1 shows a diagram of the fault estimation as the solution of an inverse optimi-
zation problem.

Figure 1: Diagram of the fault estimation process.

2.1.1 Simulation of the bioreactor

The model parameters, the dilution rate u and the values of the faults used in the
simulations are the proposed in [7]. The bioreactor parameters will be a1 = a2 = a3 =
1, a4 = 0.1. The function describing the dilution rate is

u(t) =


0.08 if 0h ≤ t < 10h
0.02 if 10h ≤ t < 20h
0.08 if t ≥ 20h

(6)

Three experiments were done. The first in the presence of fault fp1 (θ1 = 0.01, θ2 = 0),
the second with the presence of fault fp2 (θ1 = 0, θ2 = 0.015) and the last one in the

presence of both faults simultaneously (θ1 = 0.01, θ2 = 0.015). The functions

Ψ1(t) =

{
0 if 0h ≤ t < 20h
1 if t ≥ 20h

Ψ2(t) =

{
0 if 0h ≤ t < 30h
1 if t ≥ 30h

(7)

will describe the appearance of these faults in time.
The output of the system is affected by Gaussian noises that represent 2,5,8,10,12 or

15% of the variable x1. All the implementations were made in MATLAB R2012a.
Figure 2 shows the output of the bioreactor simulated without the presence of faults

(a) and with both faults present at the same time, respectively (b). In both cases there
are not noise.
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Figure 2: Output of the bioreactor without fault and with both faults.

2.2 Differential Evolution (DE) Algorithm

Differential Evolution, DE, was proposed in 1995 for optimization problems [5]. Some
of the most important advantages of DE are: simple structure, simple computational
implementation, speed and robustness [5]. DE is based on three operators: Mutation,
Crossover and Selection [5]. These operators are based on vector operations, which are
their main difference from Genetic Algorithms [4]. At each iteration Iter the algorithm
generates a new population of Z feasible solutions X1

Iter, X
2
Iter...X

Z
Iter with the application

of its three operators on the current population. This mechanism can be summarized with
the notation:

DE/Xδ
Iter−1/γ/λ (8)

where γ indicates the number of pairs of solutions from the current population to be used
for perturbing the present solution Xδ

Iter−1 ; λ represents a distribution function to be

used during Crossover. This paper applied the scheme DE/Xbest/2/bin, where bin is a
notation for a binomial distribution function and Mutation is described by:

Xz
Iter = Xbest + Cscal

(
Xα1

Iter−1 −Xα3
Iter−1 +Xα2

Iter−1 −Xα4
Iter−1

)
(9)

whereXbest, Xα1
Iter−1, X

α2
Iter−1, X

α3
Iter−1, X

α4
Iter−1 ∈ Rn are solutions from the current popu-

lation and Cscal is an algorithm’s parameter, called Scaling factor. Crossover and Selection
operators can be described as:

• Crossover

x̂z(Iter)n =

{
x̂z(Iter)n if qrand ≤ Ccross

x̂δ(Iter)n otherwise
(10)

where x̂z(Iter)n are components from vector X̂z
Iter ; 0 ≤ Ccross ≤ 1 is another algorithm’s

parameter: crossover factor ; and qrand is a random number that is generated by means of
the distribution represented by λ.

• Selection
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Vector Xz
Iter to be part of a new population, is selected using the following rule:

Xz
Iter =

{
X̂z

Iter if F (X̂z
Iter) ≤ F (Xδ

Iter−1)
Xδ

Iter−1 otherwise
(11)

A general description of the algorithm for DE optimization algorithm is shown in
Figure 3.

Require: Z, MaxIter, Cscal, Ccross

Ensure: Xbest

1: Generate an initial population of Z solutions
2: Select best solution Xbest

3: for Iter ← 1,MaxIter do
4: Apply Mutation
5: Apply Crossover
6: Apply Selection
7: Update Xbest

8: Verify stopping criteria
9: end for

10: Solution: Xbest

Figure 3: Algorithm for the Differential Evolution method (DE).

3 Results and Discussion

Three experiments were conducted considering 6 different levels of noise. The first
experiment was realized considering the presence of the fault θ1 only. The second experi-
ment was done considering the presence of the fault θ2. The third experiment considers
that the two faults appear simultaneously. Two stopping criteria were used at every case:
reaching a maximum number of iterations or a relative error in the estimations of θ1 and
θ2.

Applying a commonly used statistical procedure in this kind of experiments, 25 runs
of the DE algorithm were made for each case of faults. The results obtained were filtered
using quartiles. In other words, the solutions were put in ascending order and the data
belonging to the first and fourth quartile were eliminated. This process was carried out
with the objective of removing possible outliers that could appear. Then, it was calculated

the average of: the estimated faults θ̂1, θ̂2, the value of the objective function F (θ̂1, θ̂2),
the amount of evaluations of the objective function Eval and the amount of iterations of
the algorithm Iter.

3.1 Experiments

In order to conduct the experiments, the following values were used in the implemen-
tation of the DE algorithm: Z = 20, Cesc = 0.6 and Ccross = 0.9. A maximum number
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of 200 iterations and a relative error of 5% in the estimations of θ1 and θ2 were used as
stopping criteria.

3.2 Numerical results

Tables 1, 2 and 3 show the experimental results.

Table 1: Experiment 1 θ1 = 0.01 , θ2 = 0

% of noise θ̂1 (0.01) θ̂2 (0) F (θ̂1, θ̂2) Eval Iter

2 % 0,009856165 0,000368202 0,000220776 284 12

5 % 0,010058863 -0,000725862 0,00096661 1176 56

8% 0,010700311 0,00221580 0,003335268 3746 185

10 % 0,00837417 -0,004486296 0,00407326 4040 200

12 % 0,009605867 -0,000973501 0,005209922 2880 142

15 % 0,013009417 0,00848987 0,011615478 4040 200

Table 2: Experiment 2 θ1 = 0 , θ2 = 0.015

% of noise θ̂1 (0) θ̂2 (0.015) F (θ̂1, θ̂2) Eval Iter

2 % -0,000304156 0,014993854 0,000189863 323 14

5 % 0,000366912 0,015213365 0,000748552 278 11

8% 0,000056384 0,014947312 0,001735661 307 13

10 % -0,00020687 0,014135388 0,003102743 2032 99

12 % -0,000573714 0,013333792 0,003379113 3456 170

15 % 0,000405394 0,016392316 0,006562496 2915 143

Table 3: Experiment 3 θ1 = 0.01 , θ2 = 0.015

% of noise θ̂1 (0.01) θ̂2 (0.015) F (θ̂1, θ̂2) Eval Iter

2 % 0,00997806 0,014945478 0,000109994 301 13

5 % 0,009557908 0,015213365 0,001155813 1464 71

8% 0,009725932 0,015441528 0,002277264 2015 98

10 % 0,010045468 0,016505602 0,004581219 3747 185

12 % 0,010029644 0,016102557 0,005010786 2884 142

15 % 0,008469452 0,014899756 0,010186071 3464 171

After the analysis of the experiments is possible to conclude the following:

• The estimation error increases as the noise grows. However, in all cases the estima-
tion error is small. This demonstrate the robustness of the proposal.

• The estimation of multiple faults is a current investigation topic. Table 3 shows the
excellent results obtained when the two faults fp1 and fp2 occur simultaneously.
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• The bioreactor is a strongly non-linear system. However, the results of the experi-
ments show the feasibility of the proposal because the mean value of the objective

function F (θ̂1, θ̂2) is close to zero even when the noise is high.

• The main drawback of this algorithm could be the computational cost. However,
the dynamic of a bioreactor is in general very slow, then, the possible computational
cost is not a difficulty in this case.

4 Conclusions

In this paper, an approach to robust fault diagnosis in a chemical nonlinear bioreac-
tor was developed using the solution of an inverse optimization problem. To solve the
optimization problem the Differential Evolution algorithm was used. The obtained re-
sults demonstrate the feasibility of the proposal. As future works, the behavior of other
evolutive algorithms will be analyzed.
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