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Abstract. In [2] we considered the inverse problem that consists in the determination
of the support of characteristic sources in physical phenomena described by the modified
and classical Helmholtz equations, from boundary measurements. There we identified the
location of the barycenter of a star shaped support establishing a simple formula, and
this allows to consider a minimization algorithm to recover the original shape, based on
simulations by the method of fundamental solutions. Further numerical experiments that
validate the barycenter results and the minimization algorithm are presented.
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1 Introduction

Let Ω ⊂ RN be an open, connected and bounded set with C1 boundary, ∂Ω. Given
the source term f ∈ L2(Ω) and the Dirichlet data g ∈ H1/2(∂Ω), consider the following
problem {

(−∆ + λ)u = f, in Ω,
u = g, on ∂Ω,

(1)

where we are considering the cases λ = 0 (Laplace equation), λ = κ2 > 0 (modified
Helmholtz equation), and the usual Helmholtz equation λ = −κ2 < 0, with κ denoting
the wave number.

The problem (1) has unique solution, unless for some λ < 0 that are eigenvalues of the
Dirichlet-Laplace operator for Ω, [4], and by Trace’s Theorem, we can define the Direct
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Problem as the problem of finding
∂u

∂ν
∈ H−1/2(∂Ω), with u ∈ H1(Ω), from the source

term f and Dirichlet data g, where ν is the normal outward unity vector. On the other
hand, the Inverse Source Problem for this operator is posed as: Given the Cauchy data
{g, gν} ∈ H1/2(∂Ω)×H−1/2(∂Ω), find the source term f and a function u ∈ H1(Ω), such
that 

(−∆ + λ)u = f, in Ω,
u = g, on ∂Ω,
∂u

∂ν
= gν , on ∂Ω,

(2)

where λ ∈ R. We can study this problem defining some operators. One of these is the
Reciprocity Functional associated to (2) that is defined as

R[f ](v) :=

∫
∂Ω
u
∂v

∂ν
− v∂u

∂ν
dσ =

∫
∂Ω
g
∂v

∂ν
− vgνdσ, (3)

for all test functions v ∈ Hλ(Ω) := {v ∈ H1(Ω); (−∆ + λ)v = 0}. Using Green’s Identity,
we get ∫

∂Ω
g
∂v

∂ν
− vgνdσ =

∫
Ω
vfdx, (4)

for all v ∈ Hλ(Ω). In [3], it is proved that Hλ(Ω) is homeomorphic to H1/2(∂Ω). In [6], it
is studied the identification of star shaped sources for Poisson equation (λ = 0).

In next theorem we establish an equivalence between the source reconstruction from
the Cauchy data and from the reciprocity functional, where the proof can be found in [2].

Theorem 1.1. The Cauchy data uniquely determines the source f if, and only if, f is
uniquely determined by R[f ](v), for all v ∈ Hλ(Ω).

1.1 The Equivalence between Inverse Characteristic Source Problem
and Inverse Jump Problem

Consider the problem (1) with source f = hχω, where h 6= 0 is constant and ω ⊂ Ω and
Ω \ ω connected sets. Note that we can rewrite this problem as the transmission problem

(−∆ + λ)u− = h, in ω,
(−∆ + λ)u+ = 0, in Ω\ω,
[u] = 0, on ∂ω,[
∂u

∂ν

]
= 0, on ∂ω,

u+ = g, on ∂Ω,

(5)

where [u] = u− − u+ denotes the difference between the inner and outer parts of the
solution, respectively. Let φ be a particular solution of the equation (−∆ + λ)φ = h.
Remark that if λ 6= 0, we can take φ = h/λ and if λ = 0, we can take φ(x) = h‖x‖2/4.
Thus, considering

ϑ =

{
u+, in Ω\ω
u− − φ, in ω

(6)
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we have that, up to φ, the problem (5) is equivalent to the inverse jump problem
(−∆ + λ)ϑ = 0, in Ω\∂ω,
[ϑ] = −φ, on ∂ω,[
∂ϑ

∂ν

]
= −∂φ

∂ν
, on ∂ω,

ϑ = g, on∂Ω.

(7)

Thus, denoting the reciprocity functional of this problem as R[∂ω](·), we establish the
following result, where the proof can be found in [2].

Theorem 1.2. If Ω\ω is connected, then R[χω] = R[∂ω]. Therefore, the inverse source
problem of characteristic source (1) is equivalent to the inverse jump problem (7).

2 Centroid Determination in Characteristic Sources

Consider κ =
√
λ 6= 0, where κ ∈ R, if λ > 0, and κ ∈ C\R, if λ < 0. Consider also the

source term f(x) = χω(x), where χω is the characteristic function of a open, connected,
bounded subset, ω ⊂ Ω, with regular boundary, ∂ω, for the inverse source problem (2),
and SN−1 is the boundary of the open unity ball in RN .

So, taking the test function vϕ(x) = eκϕ·(x−p), where ϕ ∈ SN−1 and p ∈ RN are
arbitrary, the reciprocity functional for problem (2) is given by definition

R[χω]
(
eκϕ·(x−p)

)
=

∫
∂Ω
gκ(ϕ · ν)eκϕ·(x−p) − gνeκϕ·(x−p)dσ.

Remark 2.1. Denoting R[χω](ϕ) := R[χω] (eκϕ·x) , we have

R[χω]
(
eκϕ·(x−p)

)
= e−κϕ·pR[χω](ϕ).

The proof of the following results can be found in [2].

Theorem 2.1. Let ω ⊂ Ω be a star shaped subset and let f(x) = χω(x) be the source term
for the inverse problem (2). Then the centroid, p, of ω can be determinate by

ϕ · p =
1

2κ
ln

(
R[χω](ϕ)

R[χω](−ϕ)

)
, (8)

where ϕ ∈ SN−1 .

Corollary 2.1. Let f1 = χω1 and f2 = χω2 two characteristic sources for the inverse
problem (2), with ω1, ω2 ⊂ Ω star shaped subsets. If these sources generate the same
Cauchy data on the boundary, then these sources have the same centroid given by (8).
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Figure 1: Problem Domain - 7-Star inside Circle

2.1 Numerical Experiments for Centroid Determination

In this experiment was considered the domain Ω as the interior of the circle parametrized
by R(t) = (cos(t), sin(t)), t ∈ [0, 2π], and the support of the source as the star shaped
set ω, with centroid (xc, yc) = (−0.3,−0.2), which boundary, ∂ω, is parametrized by
r(t) = (xc, yc)+(0.4−0.2 cos(7t))(cos(t), sin(t)), t ∈ [0, 2π], as shown in figure 1, with null
Dirichlet data. It was considered 500 collocation points and 250 source points in the MFS.
The centroid was determined supposing relative noise over the Neumann data, where the
position error was calculated by the Euclidean distance between the original point and the
reconstructed by the formula. The result obtained is shown in table 1.

Table 1: Centroid Error - 7-Star Shaped Case.

Centroid Calculated Position Error

Noise 0% (-0.300041, -0.200032) 5.20267× 10−5

Noise 1% (-0.300193, -0.20007) 2.0509× 10−4

Noise 5% (-0.299697, -0.200433) 5.28746× 10−4

Noise 10% (-0.298261, -0.199676) 1.76905× 10−3

3 Boundary Reconstruction Using MFS

The method of fundamental solutions (MFS) is a technique used to find numerical
solution of certain boundary value problems (e.g. [5]). In this work, we follow the ideas
of [1] to formulate the MFS solution expansion.

Consider the direct problem related to Laplace-Helmholtz equation{
(−∆ + λ)u = f, in Ω,
u = g, on ∂Ω.

(9)

where the source term f = hχω, with h 6= 0 constant and ω ⊂ Ω an open, connected,
bounded subset with boundary C1, ∂ω.
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Observe that, by subsection 1.1, the problem (9) can be rewritten as the transmission
problem for ϑ, (7), and u+ and u− will be determined by the Method of Fundamental
Solution (MFS). For this, consider the following expansions centred at the corresponding
source points

u+(x) =

q∑
j=1

βIjΦλ(
√
λ|x− aj |) +

r∑
l=1

βEl Φλ(
√
λ|x− bl|), u−(x) =

p∑
i=1

αiΦλ(
√
λ|x− ci|),

with aj ∈ ΓI , bl ∈ ΓE and ci ∈ γ, where Φλ is a fundamental solution of Laplace-Helmholtz
equation, that is, (−∆ + λ)Φλ = δ, where δ is the Dirac distribution. Beside this, the
fictitious boundary γ,ΓI and ΓE are smooth and chosen such that: The curve γ be outer
to ω, with γ ⊂ (Ω\ω); The curve ΓI be outer to Ω\ω, with ΓI ⊂ ω; The curve ΓE

be outer to Ω\ω, with ΓE ⊂ Ωc. So, for be a solution of (7) is necessary that ϑ also
satisfies the boundary conditions. In this way, taking collocation points xm∗ ∈ ∂ω, with
m∗ = 1, 2, ...,m, and xn∗ ∈ ∂Ω, with n∗ = 1, 2, ..., n, we can write the above problem
as a linear system, M.α = b, where α is the vector formed by the coefficients, to be
determined, of MFS expansion, b is the vector formed by the boundary conditions and M ,
(2m+n)×(p+q+r), is formed by the linear system coefficients. In general, it is considered
2m+n ≥ 2(p+q+r) in characterization of matrix M . Therefore, solving the linear system
M.α = b, we find a solution, ϑ, of (7), in which we generate the artificial data ∂ϑ

∂ν , on ∂Ω,
to be used in the inverse problem for determine the support ω by Levenberg-Marquardt
algorithm.

3.1 Numerical Experiment for Boundary Reconstruction

Consider the source term f(x) = χω(x), where ω ⊂ Ω is an open, connected and
bounded subset of Ω ⊂ R2. Consider the boundary, ∂ω, parametrized by function R(t).
Suppose this function can be written as

R(t) = (xc, yc) +

(
rM +

∞∑
n=1

αn cos

(
nt

2

)
+ αn+1 sin

(
nt

2

))
(cos(t), sin(t)), (10)

with t ∈ [0, 2π], where (xc, yc) is the centroid of ω, given by the new reconstruction formula
(8), and rM is the initial guess in the method, called mean radius of ω, and it is related
to the intensity of a single point source. Consider the reciprocity functional R[χω̃], where
ω̃ ⊂ Ω is an approximation of ω, with ∂ω̃ parametrized by (10). So, taking the test

function vθi(x) = eκ(cos θi,sin θi)·x, with M different directions where θi = i
2π

M
, i = 1, ...,M ,

and NP as number of parameters in Fourier expansion, the main goal is minimize, over
the set of parameters αn, n ∈ {1, ..., NP}, the functional

J(vθi) =
M∑
i=0

(R[χω](vθi)−R[χω̃](vθi))
2 . (11)

Experiment - λ = 1: In this experiment, it was considered an original support, ω,
whose boundary, ∂ω, is parametrized by r(t) = (xc, yc)+(0.3−0.15 cos(5t))(cos(t), sin(t)),
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t ∈ [0, 2π], where (xc, yc) = (−0.3, 0.1), and the domain as the interior of circle parametrized
by R(t) = (cos(t), sin(t)), t ∈ [0, 2π], as shown in figure 2, where the Dirichlet data was con-
sidered null. Beside this, it was considered the number of parameters in Fourier expansion
as 11, that is, NP = 11, and M = 24. In original problem was considered 240 colloca-
tion points and 120 source points and in approximate problem, 200 collocation points and
100 source points. The initial parameter vector in reconstruction was (rM , 0, 0, 0, 0, 0, 0),
with mean radius rM = 0.320988. After 10 iterations, of approximately 52s each, it was
obtained the reconstruction with and without noise shown in figure 2, where the figure in
red is the original and in green is the reconstructed.
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Figure 2: Case λ > 0. Experiment with domain of radius 1

Experiment - λ = −1: In this experiment, it was considered an original support, ω,
whose boundary, ∂ω, is parametrized by r(t) = (xc, yc)+(0.3−0.15 cos(3t))(cos(t), sin(t)),
t ∈ [0, 2π], where (xc, yc) = (−0.3, 0.1), and the domain, Ω, as the interior of the circle
parametrized by R(t) = (cos(t), sin(t)), t ∈ [0, 2π], as shown in figure 3, with null Dirichlet
data. It was considered the number of parameters in Fourier expansion as 7, that is,
NP = 7, and M = 36. The mean radius, was rM = 0.315245−8.11401×10−8i. In original
problem was considered 200 collocation points and 100 source points and in approximate
problem, 160 collocation points and 80 source points. Beside this, the fundamental solution
was taken different because λ < 0, and the test function was taken K0(

√
−λ|xm−a|), where

xm is a collocation point and a is a source point. After 5 iterations, of approximately 65s
each, it was obtained the reconstruction with and without noise shown in figure 3, where
the figure in red is the original and the figure in green is the reconstructed. Although the
time, in each iteration, the reconstruction is greater than the previous experiment, where
the convergence is faster, because from the third iteration there are not visual differences
between each reconstruction.

Remark 3.1. To avoid problems known as ”inverse crimes”, the MFS used for the sim-
ulation of the direct problem was different from the one used for the inverse iterations.

4 Conclusions

In this work, based on [2], we studied the inverse characteristic source problem for
Helmholtz equations. Considering ω the support of characteristic source as an open,
connected, bounded subset of the domain, we present new numerical experiments related
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Figure 3: Case λ < 0. Experiment with domain of radius 1

to centroid and boundary reconstruction of ω. These new experiments complement the
validation of centroid formula proposed in [2] and the respective numerical method used.
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