
Proceeding Series of the Brazilian Society of Computational and Applied
Mathematics

Advances in a Hypergraph Coloring Conjecture

Lucas de Oliveira Contiero1
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Abstract. We consider a conjecture introduced by Hoppen, Kohayakawa and Lefmann.
For fixed positive integers k, q and t with 1 ≤ t < k and a k-uniform hypergraph H,
let κ(H, q, t) denote the number of q-colorings of the set of hyperedges of H for which
any two hyperedges in the same color class intersect in at least t elements. Consider the
function KC(n, k, q, t) = maxH∈Hn κ(H, q, t), where the maximum runs over the family Hn,k

of all k-uniform hypergraphs on n vertices. Hoppen, Kohayakawa and Lefmann found the
hypergraph H which satisfies κ(H, q, t) = KC(n, k, q, t) when q ≤ 4 or k ≥ 2t − 1. They
proposed a conjecture when q ≥ 5 and k < 2t − 1. In this work we proved this conjecture
for q ≤ 9.
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1 Introdução

In Extremal Combinatorics, we are typically concerned with the largest (or smallest)
structure satisfying some property P . For example, a classical problem for set systems is
finding the largest family of subsets of [n] = {1, . . . , n} such that no set is contained in
another (Sperner [8]). Another classical example, for graphs, is finding the graph with n
vertices and with the largest number of edges not containing a fixed graph F as a subgraph.
This problem is called the Turán Problem. Turán [9] found that, for n ≥ k and F = Kk,
the graph with the largest number of edges is the balanced complete (k− 1)-partite graph
Tk−1(n) with n vertices, also called Turán graph. In general, we say that a structure is
optimum with respect to P if it is largest (or smallest) satisfying P . In this paper, we
follow the notation of [3].

Erdős and Rothschild [4] were interested in a colored version of this problem. A q-
coloring of a graph is a function associating every edge of the graph with a color in [q], and
it is said to be F -free if there is no monochromatic copy of F as a subgraph of G. When
F is a path P3 on three vertices, a P3-free coloring is just a proper edge-coloring, in which
distinct edges that share a vertex are assigned distinct colors. Erdős and Rothschild asked,
for fixed q and k and a large enough n, for the graph n-vertex G with the maximum number
of F -free q-colorings when F = Kk. In the context of coloring problems, a structure is
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optimum when it admits the largest number of colorings with the required property. A
natural candidate to be optimum is Tk−1(n), because we can color its edges freely, leading
to q|E(Tk−1(n))| distinct colorings. For q ∈ {2, 3}, Alon, Balogh, Keevash and Sudakov [2]
(see also Yuster [10]) found that in fact Tk−1(n) is the optimum graph, but for q ≥ 4 this
is not true. Recently, Pikhurko and Yilma [7] solved this problem for q = 4 and F = K3

or q = 4 and F = K4 when n is sufficiently large. However, for q ≥ 5, or q = 4 with
F = Kk for k ≥ 5, the optimum graphs are not known.

Hoppen, Kohayakawa and Lefmann [6] considered a colored version of the Erdős-Ko-
Rado Theorem [5]. As usual, a hypergraph H = (V,E) is given by a set V of vertices
and a set E of hyperedges, where for each e ∈ E we have e ⊆ V . A hypergraph is called
k-uniform if |e| = k for all e ∈ E. For a set X, let us denote

(
X
k

)
= {A ⊆ X : |A| = k}.

Let us also denote Hn,k = {H = ([n], E) : E ⊆
([n]
k

)
}, i.e., the family of every k-uniform

hypergraph with n vertices. Given n, k and t, we say that a hypergraph H ∈ Hn,k

is t-intersecting if for any two hyperedges f, g of H we have |f ∩ g| ≥ t. A natural
question about this problem would be finding, for n, k and t, a t-intersecting k-uniform
hypergraph H = ([n], E) that maximizes |E|. For t = 1 this is the well-known Erdős-Ko-
Rado problem [5]. The authors of [5] determined that, for n ≥ 2k the largest 1-intersecting

k-uniform hypergraph is isomorphic to H = ([n],S), where S = {F ∈
([n]
k

)
: 1 ∈ F}.

Ahlswede and Khachatrian [1] found the optimum t-intersecting k-uniform hypergraph for
every n, k, t and, if n is large enough with respect to k and t, they determined that the
optimum hypergraph is isomorphic to S(t) = {F ∈

([n]
k

)
: [t] ⊆ F}. A (q, t)-coloring of

a hypergraph H is a function associating every hyperedge from E(H) with a color in [q]
where any two hyperedges f and g with the same color must satisfy |f∩g| ≥ t. Let Qq,t(H)
be the family of all (q, t)-colorings of the hypergraph H. Let us call κ(H, q, t) = |Qq,t(H)|
by the number of (q, t)-colorings of the hypergraph H. Finally, let KC(n, k, q, t) be the
maximum number of (q, t)-colorings in some k-uniform hypergraph with n vertices, i.e.,

KC(n, k, q, t) = max
H∈Hn,k

κ(H, q, t), (1)

where the maximum runs over the family Hn of all k-uniform hypergraphs on n vertices.
Before we state the main result determined by Hoppen, Kohayakawa and Lefmann, let

us introduce an important definition.

Definition 1.1. Given positive integers q, k ≥ 2, 1 ≤ t < k, c = c(q) = d q3e ≥ 1 and

n ≥ max{k, ct}, let C ⊆
(
[n]
t

)
be a set of cardinality c. The (C, k)-complete hypergraph

FC(n, k) = FC has [n] as its set of vertices and every k-set from [n] which contains some
element from C is a hyperedge of FC .

Theorem 1.1. Given positive integers k, q and t, there is n0 > 0 such that for all n > n0,
the equality κ(H, q, t) = KC(n, k, q, t) implies the following:

(a) If q ∈ {2, 3} or if q ≥ 5 and k ≥ 2t− 1, then H is isomorphic to FC , where the sets
from C are mutually disjoint.

(b) If q = 4, then H = FC for C = {t1, t2} with |t1 ∩ t2| = t− 1.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0231 010231-2 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0231


3

(c) If q ≥ 5 and k < 2t− 1, then H = FC for C = {t1, t2, . . . , tc(q)}, where |ti ∪ tj | > k,
for all 1 ≤ i < j ≤ c(q).

Remark. In case (a), for q = 2 the hypergraph above is optimum, for every n ≥ k.

Note that, as in [2], for q ∈ {2, 3} the optimum hypergraph is the one with the
maximum number of hyperedges avoiding two hyperedges sharing less than t elements,
found by Erdős, Ko and Rado [5]. Moreover, for q ≥ 4, this hypergraph is far from
being optimum. Also, note that in item (c), Theorem 1.1 does not say precisely which
hypergraph is optimum, since there are many hypergraphs satisfying this property. The
authors of [6] proposed a conjecture about additional properties satisfied by the optimum
hypergraph in this case.

Conjecture 1.1 (HKL-Conjecture). If q ≥ 5, k and t are positive integers with t < k <
2t − 1, then there is n0 > 0, such that, for n > n0, a hypergraph H = FC which satisfies
κ(H, q, t) = KC(n, k, q, t) also satisfy |ti ∪ tj | = k + 1 for any disjoint ti, tj ∈ C.

Note that, even if the HKL-Conjecture were true, we would not know precisely which
hypergraphs are optimum, because we still have many non-isomorfic hypergraphs satisfying
the HKL-Conjecture.

Theorem 1.2. The HKL-Conjecture is true for q ≤ 9.

2 Overview

To prove Theorem 1.2 we start with a new hypergraph FC , where C satisfies item (c)
in Theorem 1.1. We assume that C does not satisfy the HKL-Conjecture. We create a
shifting function ϕ, adapted from [5], which associates FC with a new hypergraph F

Ĉ
.

Then, we prove that κ(FC , q, t) < κ(F
Ĉ
, q, t) using another function R that associates

colorings of FC with colorings of F
Ĉ

in an injective, but not surjective way. Unfortunately,
our approach does not prove the HKL-conjecture in general, since our shifting function
cannot be applied to arbitrary hypergraphs. We now describe the hypergraphs to which
shifting can be applied.

Definition 2.1. Given n > k > t and a family C = {t1, . . . , tc} ⊆
(
[n]
t

)
of sets with

|C| = c, we say C is a reducible cover with respect to {tu, tv} if C satisfies; (a) ∀ i, j ∈
[c], |ti ∪ tj | > k, (b) |tu ∪ tv| > k + 1, (c) There are x ∈ tu \ tv and y ∈ tv \ tu such
that, for every z ∈ [c] \ {u, v} one of the following holds; (i) x, y ∈ tz, (ii) x, y /∈ tz, (iii)
x ∈ tz, y /∈ tz and |tv ∪ tz| > k + 1, (iv) x /∈ tz, y ∈ tz and |tu ∪ tz| > k + 1.

For simplicity, given a reducible cover, we shall always assume that x ∈ t1 and y ∈ t2.

Definition 2.2. For integers n ≥ k ≥ t ≥ 1, let C = {t1, . . . , tc} ⊆
(
[n]
t

)
be a reducible

cover. We define the shifting function for hypergraphs ϕxy : FC −→ FĈ
as

ϕxy(e) =

{
e′ = (e \ {y}) ∪ {x}, x /∈ e, t2 ⊆ e,

e, otherwise,
(2)

where Ĉ = (C \ {t2}) ∪ {t′2} and t′2 = (t2 \ {y}) ∪ {x}.
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In general, when the reducible cover is clear from context, given a set u with y ∈ u
and x /∈ u, we shall write u′ = (u \ {y}) ∪ {x}.

Lemma 2.1. Let n ≥ k ≥ t be integers and C be a reducible cover. Let e ∈ FC be a
hyperedge. Then we have:

(a) |e| = |ϕxy(e)|.

(b) The function ϕxy : FC −→ FĈ
from Definition 2.2 is bijective.

(c) |FC | = |FĈ
|.

3 The optimum hypergraph for q ∈ {5, 6}
In this section, we prove Theorem 1.3 for q ∈ {5, 6}, where we know that the optimum

hypergraph has a cover of size two and arguments are simpler.

Proof. Consider q ∈ {5, 6} and let C be a cover of size c that does not satisfy the HKL-
Conjecture. By Theorem 1.1 with q ∈ {5, 6} we have c = 2, say C = {t1, t2}. As |t1| = |t2|
but t1 6= t2, there are x ∈ t1 \ t2 and y ∈ t2 \ t1, which implies that C is a reducible cover.
Consider Ĉ = {t1, t′2}, where t′2 = (t2 \ {y}) ∪ {x}.

Claim 3.1. Given two hyperedges u, v ∈ FC , with |u∩v| ≥ t, we have |ϕxy(u)∩ϕxy(v)| ≥ t.

Proof. For a contradition, let us suppose that there are u, v ∈ FC , with |u ∩ v| ≥ t, but
|ϕxy(u)∩ϕxy(v)| < t. In this case, ϕxy must change only one of the hyperedges. Without
loss of generality, we suppose ϕxy(u) = u and ϕxy(v) = v′. Then we have |u ∩ v′| < t.
From |u ∩ v| ≥ t, we have y ∈ u and x /∈ u. Then, t2 ⊆ u, which implies ϕxy(u) = u′, a
contradiction.

Now, for every (q, t)-coloring ∆ of FC , we define M(∆) as the (q, t)-coloring of F
Ĉ

which associate with each hyperedge ϕxy(e) the color of e in ∆. For simplicity, we may
think of the function M as “keeping” the color of every hyperedge from FC to F

Ĉ
.

Note that, on the one hand, M is an injective function because ϕxy is an injective
function. This implies that |Qq,t(FC)| ≤ |Qq,t(FĈ

)|. On the other hand, we claim that we
can choose a pair ϕxy(u), ϕxy(v) ∈ F

Ĉ
such that t1 ⊆ ϕxy(u), y /∈ ϕxy(u), t′2 ⊆ ϕxy(v),

y /∈ ϕxy(v) and |ϕxy(u) ∩ ϕxy(v)| = t. Consider the following coloring ∆̂ of F
Ĉ

. We
choose a color α to associate with those two hyperedges ϕxy(u) and ϕxy(v). For the other
hyperedges, we use two other colors, say yellow for those ones covered by t1 and green
for those ones covered by t′2. Note that this is a (q, t)-coloring of F

Ĉ
. The existence of a

(q, t)-coloring ∆ of FC such thatM(∆) = ∆̂ requires that u and v have the same color in
∆, but this is not possible, as |ϕxy(u) ∩ ϕxy(v)| = t implies |u ∩ v| = t− 1. Therefore, M
is not surjective. To see that our claim is true, the hyperedges ϕxy(u) and ϕxy(v) may be
defined as follows. Put t1 in ϕxy(u), t′2 in ϕxy(v), and then choose vertices from t1 \ t′2 to
add in ϕxy(v) and vertices from t′2\t1 to add in ϕxy(u), aiming for the desired intersection.
After that, it is enough to choose vertices outside t1 ∪ t′2 until the hyperedges have size k
(taking the same vertices for both if we still do not have the desired intersection).
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Then, for five or six colors we have |Qq,t(FC)| < |Qq,t(FĈ
)|. Besides, there is only one

cover satisfying the HKL-Conjecture in this case, so that we know that there is a single
optimum hypergraph up to isomorphism.

4 Proof of the HKL-Conjecture for q ∈ {7, 8, 9}
Now, we shall give an overview of the proof of the HKL-Conjecture when q ∈ {7, 8, 9}.

In this case, we need to be more careful, because Claim 3.1 does not hold for q ≥ 7. An
example of this follows below.

Example 4.1. Consider n = 8, k = 4, t = 3, q = 9, t1 = {x, 1, 2}, t2 = {y, 3, 4},
t3 = {1, 3, 5}, C = {t1, t2, t3}. Note that k < 2t − 1, q ≥ 5 and, in fact, C is a reducible
cover. Consider the following (q, t)-coloring ∆ of FC (the colors appear between brackets
at the right side of the hyperedges).

Table 1: A coloring that we cannot keep colors.

Colored hyperedges Contain

{x, y, 1, 2}[a], {x, 1, 2, 3}[a], {x, 1, 2, 4}[a], {x, 1, 2, 5}[a], {x, 1, 2, 6}[a] t1
{x, y, 3, 4}[b], {y, 1, 3, 4}[α], {y, 2, 3, 4}[b], {y, 3, 4, 5}[b], {y, 3, 4, 6}[b] t2
{x, 1, 3, 5}[c], {y, 1, 3, 5}[α], {1, 2, 3, 5}[c], {1, 3, 4, 5}[c], {1, 3, 5, 6}[c] t3

Note that f = {y, 1, 3, 4} and g = {y, 1, 3, 5} have the same color (and satisfy |f ∩ g| ≥
t), but |ϕxy(f) ∩ ϕxy(g)| < t. For that reason, we cannot just “keep” the color of each
hyperedge from FC to F

Ĉ
. So we create a function R, called recoloring function. When

two hyperedges f and g, with t2 ⊆ f , t3 ⊆ g and |f ∩ g| = t cannot keep the same color
because |f ′ ∩ g| = t− 1, the function R switches the colors of g and g′.

Table 2: The coloring after recoloring.

Colored hyperedges Contain

{x, y, 1, 2}[a], {x, 1, 2, 3}[a], {x, 1, 2, 4}[a], {x, 1, 2, 5}[a], {x, 1, 2, 6}[a] t1
{x, y, 3, 4}[b], {x, 1, 3, 4}[α], {x, 2, 3, 4}[b], {x, 3, 4, 5}[b], {x, 3, 4, 6}[b] t′2
{x, 1, 3, 5}[α], {y, 1, 3, 5}[c], {1, 2, 3, 5}[c], {1, 3, 4, 5}[c], {1, 3, 5, 6}[c] t3

Note that g = {y, 1, 3, 5} and g′ = {x, 1, 3, 5} switched colors because of the hyperedge
f = {y, 1, 3, 4}, which is covered by t2, and assume color α and intersection exactly t = 3
with {y, 1, 3, 5}.

As in the previous case we prove that the function R is injective but not surjec-
tive, which requires much more careful case analysis. With that we obtain |Qq,t(FC)| <
|Qq,t(FĈ

)|. This leads to the following result.
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Lemma 4.1. If FC is a hypergraph where C is reducible, then FC is not optimum.

Now, to obtain the result for q ∈ {7, 8, 9}, it is enough to prove the following lemma.

Lemma 4.2. If C is a cover such that |C| = c = 3, then C either satisfies the HKL-
Conjecture, or is reducible.

In fact, the following stronger result holds for |C| = 3.

Lemma 4.3. Let n and t be positive integers, and let t1, t2, t3 ∈
(
[n]
t

)
be distinct sets,

where |t1 ∩ t2| ≤ min{|t1 ∩ t3|, |t2 ∩ t3|}. Then at least one of the following cases is true.

(A) There are elements x, y such that x ∈ t1 \ (t2 ∪ t3) and y ∈ t2 \ (t1 ∪ t3).

(B) There are elements x, y such that x ∈ (t1 ∩ t3) \ t2 and y ∈ (t2 ∩ t3) \ t1.

Proof. By contradiction, let us suppose both cases (A) and (B) are not true. Now we
consider three cases. (i) t1 \ t3 ⊆ t2. (ii) (t3 \ t1)∩ t2 = ∅. (iii) t1 \ t3 6⊆ t2 e (t3 \ t1)∩ t2 6= ∅.

In case (i), from t1 6= t2, there is some element x such that x ∈ (t1 ∩ t3) \ t2. Since
(B) is false, we have (t2 ∩ t3) \ t1 = ∅, which implies t2 ∩ t3 ⊆ t1 ∩ t2 ∩ t3 ⊆ t1 ∩ t2. But
t1 \ t3 6= ∅ and t1 \ t3 ⊂ t2, So that t1 ∩ t2 ∩ t3 ⊂ t1 ∩ t2, which implies t2 ∩ t3 ⊂ t1 ∩ t2, a
contradiction with |t1 ∩ t2| ≤ min{|t1 ∩ t3|, |t2 ∩ t3|}.

In case (ii) we have (t3 \ t1) ∩ t2 = ∅, which implies t2 ∩ t3 ⊆ t1 ∩ t2 ∩ t3 ⊆ t1 ∩ t2, but
from |t1 ∩ t2| ≤ min{|t1 ∩ t3|, |t2 ∩ t3|}, we have t2 ∩ t3 = t1 ∩ t2 ∩ t3 = t1 ∩ t2. On the other
hand, we can write t2 in a better way, t2 = (t2 ∩ t1) ∪ (t2 ∩ (t3 \ t1)) ∪ (t2 \ (t1 ∪ t3)), but
from t2 6⊆ t1 and (t3 \ t1)∩ t2 = ∅, we have t2 \ (t1 ∪ t3) 6= ∅, which implies, supposing that
(A) is false, t1 \ (t2 ∪ t3) = ∅, which implies t1 = (t1 ∩ t2) ∪ (t1 ∩ t3). But t2 ∩ t3 = t1 ∩ t2,
then t1 = (t2 ∩ t3) ∪ (t1 ∩ t3), which implies t1 ⊆ t3, a contradiction.

In case (iii) we have t1 \ t3 6⊆ t2, so that there is an element x ∈ t1 \ (t2 ∪ t3),
from (A) we have t2 \ (t1 ∪ t3) = ∅, which implies t2 ⊂ t1 ∪ t3. Then we have t2 =
(t1 ∩ t2 ∩ t3) ∪ (t2 ∩ (t3 \ t1)) ∪ (t2 ∩ (t1 \ t3)). But, from the hypothesis of this case,
we have (t3 \ t1) ∩ t2 6= ∅, which implies there is an element y ∈ (t3 ∩ t2) \ t1, and from
(B), we have (t1 ∩ t3) \ t2 = ∅, which implies t1 ∩ t3 ⊆ t2, so that t1 ∩ t3 ⊆ t1 ∩ t2. But
|t1∩ t2| ≤ min{|t1∩ t3|, |t2∩ t3|}, so we have t1∩ t3 = t1∩ t2, which implies t2∩ (t1 \ t3) = ∅.
Thus, we have t2 = (t1∩ t2∩ t3)∪ (t2∩ (t3 \ t1)), which implies t2 ⊆ t3, a contradiction.

The combination of Lemma 4.1 and Lemma 4.2 implies that every optimum hypergraph
must satisfy the HKL-Conjecture. To extend this to q ≥ 10 we have two problems. First,
we think that Lemma 4.1 is true for q ≥ 10 but we are not aware of a proof. Second, for
q ≥ 10, there are covers that do not satisfy HKL-Conjecture but are not reducible, which
we call irreducible. See Figure 1 for k = 7 and t = 5.

So, another technique is needed to prove the HKL-Conjecture for q ≥ 10. Further
note that, even if the HKL-Conjecture is true for every q, there are a lot of different
configurations whose pairwise unions have size k+ 1. Therefore, it would be interesting to
investigate which of these configurations yield the largest number of (q, t)-colorings. See
Figure 2 for k = 4 and t = 3.
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Figure 1: Irreducible cover of size 4 for q = 12, k = 7 and t = 5.

Figure 2: Distinct covers that satisfy the HKL-Conjecture for q = 9, k = 4 and t = 3.
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