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1 Introduction

Natural numbers are among the most basic objects which play some role in the foun-
dations of both Computer Science and Mathematics. Without going any deep on this
matter, we just emphasize the role natural numbers play in the arithmetization of analysis
and in the development of techniques to proofs of program termination.

As is very well known, a proper axiomatic foundation for the theory of natural numbers
emerged from the works by Peirce [8], Dedekind [2], and Peano [7], which presented slightly
different sets of axioms characterizing the sequence of natural numbers up to isomorphism.

Independence is one of the classical properties a set of axioms may satisfy, the others
being consistency, satisfiability, completeness, and categoricity [15]. A lot of attention
has been devoted to devising independent sets of axioms for various basic mathematical
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theories, according to various notions of independence [1, 3, 9, 10, 13, 14]. In particular,
since Peano, it is known that the axioms proposed by Dedekind are independent in the
usual sense that none of them is a consequence of the others (cf. [5]). On the other hand,
by means of algebraic tools, Henkin [4] proved that the Dedekind-Peano axioms are not
completely independent, in the sense proposed by Moore [6] (cf. Section 3). Henkin left
as an open problem that of providing a direct, purely logical proof of his result. In fact,
before Henkin, Wang [14] had already proved that the Dedekind-Peano axioms are not
completely independent, and proposed an alternative set of axioms for natural numbers
which is completely independent, but the set of primitive concepts he used was different
from that originally adopted by Dedekind and Peano.

In this note, we investigate the independence of the set of axioms for the sequence of
natural numbers given by Dedekind [2] and Peano [7] a little bit further. After reviewing
Peano’s and Henki’s results on independence, we contribute to this line of development by
presenting a direct proof that the Dedekind-Peano axioms are not completely independent,
as well as a new completely independent set of axioms based on the same set of primitives
as the one originally used by Dedekind and Peano.

2 Weak (in)dependence of the Dedekind-Peano Axioms

In this section, we recall the Peano axioms and review their weak independence. All
the results in this section are very easy and well known.

Definition 2.1. Let 0 be a constant and S a unary function symbol. The Dedekind-Peano
axioms, or simply DP axioms, are:

Zer. ∀x(Sx 6= 0).
Inj. ∀x∀y(Sx = Sy → x = y).
Ind. ∀X(0 ∈ X ∧ ∀x(x ∈ X → Sx ∈ X)→ ∀x(x ∈ X)).

A Dedekind-Peano structure, or simply DP structure, is a structure N = 〈N , 0N ,
SN 〉, where N is a non-empty set, 0N ∈ N , and SN : N → N .

A DP structure N is a Dedekind-Peano model, or simply DP model, when the axioms
Zer, Inj, and Ind are true in N , when the symbols 0 and S are respectively interpreted as
0N and SN .

The structure 〈N, 0N, SN〉, where N is the set of natural numbers, 0N is the number
zero, and SN is the usual successor function, is the standard DP model.

Theorem 2.1. The set {Zer, Inj, Ind} is satisfiable.

Given a (satisfiable) set of axioms, there exist in the bibliography of foundations several
forms of independence it may be asked to satisfy. Let Σ be a satisfiable set of axioms and
ϕ be an axiom in Σ. The first notion we consider is the usual notion of independence,
which is due to Peano (see, e.g., [5]).

Definition 2.2. We say that ϕ is weakly independent from Σ when (Σ r {ϕ}) ∪ {¬ϕ}
has a model.

We say that Σ is weakly independent when every ϕ in Σ is weakly independent from Σ.
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The following is also due to Peano [7].

Theorem 2.2. The Dedekind-Peano axioms are weakly independent.

3 Strong (in)dependence of the Dedekind-Peano Axioms

In this section, we investigate the strong independence of the DP-axioms. We recall
Henkin’s result showing throughout semantic means that the DP-axioms are not strongly
independent. Besides, we present our main result: a completely syntactical proof that the
DP-axioms are not strongly independent.

A direct generalization of weak independence was proposed by Moore [6].

Definition 3.1. We say that Σ is strongly independent when (ΣrΓ)∪{¬ϕ : ϕ ∈ Γ} has
a model, for every Γ ⊆ Σ.

Observe that we obtain weak independence by restricting Definition 3.1 to the cases
where Γ is an singleton subset of Σ.

Investigating the complete independence of the DP-axioms, we were unable to find a
DP-structure in which ¬Zer, ¬Inj, and Ind were simultaneously true. The following result
explain why this is impossible.

Theorem 3.1. The Dedekind-Peano axioms are not completely independent.

Theorem 3.1 is an immediate corollary of the following result.

Lemma 3.1. Every model of Ind is a model of Inj ∨ Zer.

Proof. We present a sketch of the proof by Henkin [4] a more elaborated proof will be
presented below.

In essence, the idea behind Henkin’s proof of Lemma 3.1 [4] is the following. Let
N = 〈N , 0, S〉 be a DP structure such that Ind is true in N . It then follows that
N = {0, S0, SS0, . . .}. Now, either Sm0 6= Sn0 for all m,n ∈ N, in which case we have
that both Zer and Inj are true in N , or there exists a least m such that Sm0 = Sn0 for
some n > m. In this case, if m = 0 we have that ¬Zer and Inj are both true in N , and if
m > 0 we have that Zer and ¬Inj are both true in N .

Note that this proof makes fundamental use of the numbers m,n, . . . ∈ N and of the
well-ordering ≤ of N when talking about “the least m such that . . . ”. So, in a certain
sense, this is an indirect proof, by considering mathematical objects that are “out of the
range” of its hypotheses. Henkin suggested the existence of a direct proof of the fact that
every DP structure in which Ind is true is also a DP structure in which Zer and/or Inj is
true, i.e., one “using only the laws of logic and the elements of set theory” [4, p. 324].
Considering ourselves to be what Henkin calls “enterprising readers”, we have decided to
take on his challenge and provide as simple a proof as we could of the following theorem.

Theorem 3.2. Inj is a second-order syntactical consequence of ¬Zer and Ind.
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The proof proceeds in a series of results, based on the following abbreviations:

ϕ1(x,X) ⇔ 0 ∈ X
ϕ2(x,X) ⇔ x ∈ X
ϕ3(x,X) ⇔ ∀y ∈ N(y 6= x ∧ y ∈ X → Sy ∈ X)
ϕ(x,X) ⇔ ϕ1(x,X) ∧ ϕ2(x,X) ∧ ϕ3(x,X)

In what follows, we work in a certain informal environment, but if the reader is con-
cerned with the formalization of our results, everything we prove here can be developed
from the usual (incomplete) set of formal axioms for second-order logic (cf. [12]). Due
to lack of space, we left this important aspect of our work for a complete version of this
paper. We also omit some of the proofs.

Lemma 3.2. Let N = 〈N, 0, S〉 be a DP-structure. Then, the following hold:
(a) ϕ(x,N).
(b) If ϕ(x,Xi), for every i ∈ I, then ϕ(x,∩F).

Lemma 3.2 allows us to define

Ix =
⋂
{X ⊆ N : ϕ(x,X)},

for every x ∈ N . We immediately have 0 ∈ Ix, x ∈ Ix, and ϕ(x, Ix). In other words, Ix is
the least subset of N that contains 0 and x as elements, and is closed under the operation
S up to x.

Lemma 3.3. I0 = {0}.

Lemma 3.4. ISx ⊆ Ix ∪ {Sx}

Next, we define two binary relations on N . For every x, y ∈ N :

xPy ⇔ Ix ⊆ Iy
xP 6=y ⇔ xPy ∧ x 6= y

The intended meaning of ‘xPy ’ is ‘x is a predecessor of y’. It possesses, by definition,
some properties an ordering relation on N must possesses. For example, we have the
following immediate properties.

Lemma 3.5. (a) xPx.
(b) If xPy and yPz, then xPz.

But the reader must be cautioned that this relation may lacks some familiar properties
that a proper ordering on N must possesses, for example, it may not agree with S, i.e.
xPy may not imply SxPSy. Now, will take some effort to prove that P is a total ordering
on N that possesses some of the familiar properties of ≤ on N.

Lemma 3.6. 0Px.

Lemma 3.7. ¬(xP 6=0).
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Lemma 3.8. Ix = {y : yPx}.
Proof. To prove that Ix ⊆ {y : yPx}, it suffices to prove that ϕ(x, {y : yPx}). We have
ϕ1(x, {y : yPx}), because 0 ∈ {y : yPx}, by lemma 3.6. We have ϕ2(x, {y : yPx}),
because Ix ⊆ Ix. Finally, we have ϕ3(x, {y : yPx}), because taking y ∈ N such that
y 6= x and y ∈ {y : yPx}, we have Iy ⊆ Ix. Since y 6= x, ϕ3(x, Ix) implies Sy ∈ Ix.
Thus, Ix ∪ {Sy} ⊆ Ix. Putting this together with Lemma 3.4, we have ISy ⊆ Iy ∪ {Sy} ⊆
Ix∪{Sy} ⊆ Ix. Whence, Sy ∈ {y : yPx}. To prove {y : yPx} ⊆ Ix, let z ∈ {y : yPx}. So,
zPx, which, by definition, gives us Iz ⊆ Ix. Now, since zPz, we also have by definition,
z ∈ Iz. So, z ∈ Ix.

Lemma 3.9. ϕ(x, {y : ¬(xP 6=y)}).
Proof. We consider two cases. If x = 0, take y ∈ {y : ¬(xP 6=y)}. We have ¬(0P 6=y).
Hence, ¬(0Py) or 0 = y. Hence, by lemma 3.6, y = 0. Thus {y : ¬(xP 6=y)} = {0}.
Since ϕ(0, {0}), the result follows. If x 6= 0, we proceed as follows. We have ϕ1(x, {y :
¬(xP 6=y)}), because ¬(xP 6=0), by lemma 3.7. We have ϕ2(x, {y : ¬(xP 6=y)}), because if
we assume xP 6=x we would have x 6= x, a contradiction. We have ϕ3(x, {y : ¬(xP 6=y)}),
because taking y ∈ N such that y 6= x and y ∈ {y : ¬(xP 6=y)}, we have ¬(xPy). Hence,
by lemma 3.8, x /∈ Iy. Now, we consider two cases. If Sy = x, then by definition of P 6=,
¬(xP 6=Sy). If Sy 6= x, since x /∈ Iy, we also have x /∈ Iy ∪ {Sy}. From this, by applying
Lemma 3.4, we conclude x /∈ ISy. Now, since x ∈ Ix, we have Ix 6⊆ ISy and, whence,
¬(xP 6=Sy). In both cases, we have Sy ∈ {y : ¬(xP 6=y)}.

From the previous lemmas we have the following corollary.

Corollary 3.1. If xPy, then ¬(yP 6=x).

Next lemma is the first time we make use of Ind.

Lemma 3.10. If ¬(xP 6=Sx), then ¬∃y(xP 6=y).

Lemma 3.11. If y, z ∈ Ix, then yPz or zPy.

Proof. Define ψ(x) to be the property ∀ y, z ∈ Ix(yPz or zPy). We prove by induction
on x that ∀xψ(x). We have ψ(0), by lemmas 3.3 and 3.5(a). Suppose ψ(x), that is,
∀ y, z ∈ Ix(yPz or zPy). Let y, z ∈ ISx. We consider three cases. If y = z = Sx, by 3.5(a)
SxPSx, so we have yPz. If y 6= Sx and z = Sx, by the hypothesis and Lemma 3.8, yPSx
and z = Sx. So, we have yPz. If y 6= Sx and z 6= Sx, by Lemma 3.4, y, z ∈ Ix. So, by
the Induction Hypothesis, we have yPz or zPy.

Lemma 3.12. If Sx = 0, then ∀y(y ∈ Ix).

Lemma 3.13. If Sy = Sz and ∃x(yP 6=x ∧ zP 6=x), then y = z.

Theorem 3.3. If ∃x(Sx = 0), then ∀y∀z(Sy = Sz → y = z).

Proof. Let x be such that Sx = 0. So, by lemma 3.12, we have ∀y(y ∈ Ix). We consider
two cases. If Sy = Sz = 0, then by lemma 3.12 again, Ix = Iy = Iz. But, by lemma 3.11,
P is a total order on Ix, whence we conclude x = y = z. If Sy = Sz 6= 0, then x 6= y
and x 6= z. But, by lemma 3.8, Ix = {u : uPx}, so we have yP 6=x and zP 6=x. Now, from
Lemma 3.13 we conclude y = z.
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4 A Completely Independent Set of Axioms

In this section, we show that a completely independent set of axioms written in the
same language as, and very similar to, the Dedekind-Peano axioms can be obtained by
adapting the induction axiom in a simple way.

Definition 4.1. The bi-induction axiom is:

Bind. ∀X[0 ∈ X ∧ ∀x(x ∈ X ↔ Sx ∈ X)→ ∀y(y ∈ X)].

Theorem 4.1. Axioms Zer, Inj, and Bind are satisfiable.

Proof. Take the standard model.

Theorem 4.2. Axioms Zer, Inj, and Bind are completely independent.

Proof. For each subset Γ ⊆ {Zer, Inj,Bind}, we provide the smaller DP-structure in which
{¬ϕ : ϕ ∈ Γ} together with the other remaining axioms are true. Of course, the biggest
part of this table is just a repetition of what we already have in Section 2.

1. 〈N , a, SN 〉, where N = {a} and SNa = a, is a model of {¬Zer, Inj, Bind}.

2. 〈N , a, SN 〉, where N = {a, b} and SNa = SNb = b, is a model of {Zer, ¬Inj, Bind}.

3. 〈N , 0N, SN 〉, where N = N∪ {
√

2}, SN (x) = SNx for all x ∈ N, and SN (
√

2) =
√

2,
is a model of {Zer, Inj, ¬Bind}.

4. 〈N , a, SN 〉, where N = {a, b} and SN (a) = SN (b) = a, is a model of {¬Zer, ¬Inj,
Bind}.

5. 〈N , a, SN 〉, where N = {a, b}, SN (a) = a, and SN (b) = b, is a model of {¬Zer, Inj,
¬Bind}.

6. 〈N , a, SN 〉, where N = {a, b, c}, SN (a) = SN (b) = b, and SN (c) = c, is a model of
{Zer, ¬Inj, ¬Bind}.

7. 〈N , a, SN 〉, where N = {a, b, c}, SN (a) = SN (b) = a, and SN (c) = c, is a model of
{¬Zer, ¬Inj, ¬Bind}.

This concludes the proof.

A slightly weaker version of Dedekind’s Homomorphism Theorem [2] follows from ax-
ioms Zer, Inj, and Bind.

Theorem 4.3 (Weak Homomorphism theorem). If N = 〈N , 0N , SN 〉 is a model of {Zer,
Inj, Bind}, then for any structure M = 〈M , 0M , SM 〉 that is a model of Ind, there exists
a unique homomorphism from N into M, i.e., a unique function φ : N → M such that
φ0N = 0M and φSNx = SMφx.

Moreover, as in Dedekind [2], we have the following corollaries.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0239 010239-6 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0239


7

Corollary 4.1 (Categoricity theorem). Any two models of {Zer, Inj, Bind} are isomorphic.

Corollary 4.2 (Completeness theorem). If a sentence is true in N, then it is a consequence
of {Zer, Inj, Bind}.

From the Categoricity Theorem, we have that the our axioms are indeed equivalent to
DP axioms, and we are done.
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