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In sedimentary basins, large oil reservoirs are found beneath layers of salt, called
subsalt. The salt found in such basins is an extraordinarily fluid material compared to
other rocks. These properties of salt present unique challenges for drilling and comple-
tion. Drillers have to address factors that cause openhole instability and accompanying
problems, including borehole walls weakened by incompatible muds, restrictions, and un-
dergauge hole caused by salt creep. During the life of a well, salt movement can displace
wellbore tubulars, possibly causing either failure or restricted access.

There are at least two ways to describe the creep behavior of salt. In the context
of structural mechanics, the flow of salt is generally considered as a problem for the
evolutionary displacement, which leads to the equations for the displacement. In the
context of fluid dynamics [2], the creep behavior is considered as a problem of steady
incompressible flow with low Reynolds number. We propose a model to describe the
creeping of rock salt as an inertialess flow of a viscoelastic fluid of Oldroyd-B type. The
governing equations for the problem can be written as [3]

∇ · v = 0, (1)

−ηs∇2v +∇p = ∇ · τ , (2)

τ + λ1(τ)∇ = ηpγ̇, (3)

where v is the velocity vector, p is isotropic pressure, τ is the elastic stress tensor, −ηs and
−ηp are the solvent and polymeric viscosities, respectively. The operator (∗)∇ represents
the covariant derivative of a tensor, and is given by

(∗)∇ =
D

Dt
(∗)−

{
(∗) · ∇v + (∇v)T · (∗)

}
(4)

The above system of equations (1)-(3) has been solved using the Element-Based Finite-
Volume Method [1, 4], which enables using an unstructured hybrid grid (constituted by
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triangular and quadrilateral elements) of cell-vertex type (Figure 1). Coupled mass and
momentum conservation equations were solved using the interpolation function of the fi-
nite element differential scheme (FIELDS) [5]. Such interpolation function avoided the
checkerboard pressure problem, which arises from the collocated arrangement of the vari-
ables in the computational grid. Furthermore, this interpolation function also promoted
the inclusion of the pressure and stress terms in the mass conservation equation. The
presence of nodal pressure values in the interpolation of velocity avoid any decoupling
between velocity and pressure fields. Elastic components of the stress has been computed
by solving constitutive equation using either the single point upstream (SPU) or skew
upwind difference scheme-node (SUDS-NO). The resulting linear systems has been solved
using both the GMRES and BiCGSTAB methods provided by the PETSc library with an
ILU preconditioner.

Figure 1: Main geometrical entities on the element-based finite-volume method

At first, the start-up of planar Poiseuille flow between two parallel plates has been
tackled. For Oldroyd-B model there exist analytical solution making it possible to evaluate
exactly the discretization errors of the numerical method. Excellent agreement has been
found between the present numerical results and those analytical solutions.

The follow up step, is to apply the method to the 4:1 planar contraction benchmark
problem, in order to investigate the influence of the viscosity effects on the flow, and results
has been compared with those found in the literature for creeping Oldroyd-B flow, for a
range of Weissenberg numbers. The algorithm is able to capture latest trends reported in
the literature.
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