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Abstract. We consider the numerical solution of functional integral equations, a particular
class of nonlinear Fredholm integral equations, by the collocation method with piecewise
linear basis functions. The nonlinear algebraic system arising from the spatial discretization
is iteratively solved with a fixed-point algorithm.
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1 Introduction

Two important classes of nonlinear integral equations, namely Hammerstein and Urysohn
equations, have been widely studied from both analytical [4] and numerical [3] points of
view. Urysohn integral equation is given as

u(x) = g(x) +

∫ b

a

K(x, y, u(y)) dy, x ∈ [a, b], (1)

whereas Hammerstein is a particular case of (1):

u(x) = g(x) +

∫ b

a

K(x, y)f(x, u(y)) dy, x ∈ [a, b]. (2)

This paper concerns a slightly different nonlinear integral equation,

u(x) = g(x) + f(x,K[u](x)), x ∈ [a, b], (3)

known as a functional integral equation [5]. The operator K, defined as

K[u](x) =

∫ b

a

K(x, y)u(y) dy,
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is the linear integral operator associated with the kernel K, with K : [a, b]× [a, b] −→ R.
Integral equations such as (3) have been recently employed to describe generalized Poisson-
Boltzmann distributions of ions in models for swelling porous media [8].

We consider the following conditions below

a. g ∈ L1([0, 1]).

b. f : [0, 1] × IR → IR satisfies Caratheodory hypotheses (i.e. f is measurable with
respect to x ∈ [0, 1], for all y ∈ IR, and continuous in y ∈ IR, for a.a. x ∈ [0, 1]) and
there are θ ∈ L1([0, 1]), τ ≥ 0 such that f(x, y) ≤ θ(x) + τ |y|, x ∈ [0, 1], y ∈ IR.

c. K verifies Caratheodory hypotheses and there is γ ∈ L1([0, 1]) such that K(x, y) ≤
γ(x), x a.e. in [0, 1], y ∈ IR.

d. τ‖K‖L1 < 1.

Theorem 1.1. Under the assumptions (a)-(d) above the eq. (3) has at least one solution
u ∈ L1([0, 1]) (see [7]).

Although the theorem is stated for the interval [0, 1], we can extend it through a change
of variables to the form (3).

Few authors have considered the numerical approximation of functional integral equa-
tions [1,9], motivating the present work to use the strategy known as fixed-point (Picard)
iteration [2], together with the collocation discretization, to find an approximate solution
u(k) to a solution of eq. (3).

The remainder of the paper is organized as follows. In Section 2 we present spatial dis-
cretization on collocation method and fixed-point scheme. Numerical results are provided
in Section 3. Finally we draw some conclusions.

2 Domain discretization and fixed-point method

For simplicity, let us consider a uniform grid

a = x0 < x1 < . . . < xn = b

with spacing h, and let φj ∈ P1([a, b]) be the Lagrange global piecewise linear functions
satisfying φj(xi) = δij . The collocation method for (3) with continuous piecewise linear
functions reads as: find

uh(x) =
n
∑

j=0

ujφj(x),

such that
uh(xi) = g(xi) + f(x,K[uh](xi)), 0 ≤ i ≤ n. (4)

It follows from the linearity of the operator K that

ui = g(xi) + f



xi,

n
∑

j=0

K[φj ](xi)uj



 , 0 ≤ i ≤ n.
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We employ the trapezoidal rule at the grid points to evaluate K[φj ](xi):

K[φj ](xi) =

∫ b

a

K(xi, y)φj(y) dy ≈
n
∑

k=0

wkK(xi, xk)φj(xk) = wjK(xi, xj), (5)

where w0 = wn = h/2 and wk = h (1 ≤ k ≤ n− 1). This leads to the following numerical
scheme: find u = [u0, . . . , un]

T such that

u = T1(u), T1(u) = g + F (x, K̃u), (6)

where K̃, g, and F (x,y) are defined as

K̃i,j = wjK(xi, xj), gi = g(xi), Fi(x,y) = f(xi, yi).

Note that, in general, K̃ is a dense matrix.
One strategy to solve (6) is to define v = K̃u. If K̃ is invertible, then

K̃−1v = F (x,v) + g, (7)

v = K̃F (x,v) + K̃g.

Thus, we first solve the nonlinear system

v = T2(v), T2(v) = K̃F (x,v) + K̃g, (8)

and afterwards we solve the linear system

K̃u = v. (9)

Both (6) and (8) naturally lead to a fixed-point (Picard) iteration scheme:

u(k+1) = T1(u
(k)), or v(k+1) = T2(v

(k)).

3 Numerical example

As a preliminary assessment of the methodology presented in this work, we consider
the nonlinear integral equation (3) with K(x, y) = eλ|x−y| and f(x, y) = αy2, where λ < 0
and α > 0. Here g(x) is chosen as

g(x) = −α cos2(x) +

(

2α−
1 + λ2

2λ

)

cos(x) +

(

λ

2
− α

)

, (10)

so that the exact solution on interval [0, 4π] is given by

u(x) =
1

2λ

[

−(1 + λ2) cos(x) + λ2
]

.

The parameter λ is related to the correlation length of the kernel. If |λ| is large,
then K(x, y) decays more rapidly to zero as |x − y| increases, which demands a finer
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discretization. On the other hand, α controls the nonlinearity of the problem in the sense
that it weights f in (3).

Let k the number of iterations of the Picard’s method and n the amount of point in
the grid of the collocation method. In the following, we study how relative error depends
of k, n, and consider the input parameters λ and α. In all tests we employ the initial
guess u0(x) = 2 on the point-fixed method.

Let us start with the dependence on k, which is depicted in Fig. 1. We consider
λ = −10, n = 50, 100, 500, 1000, and α = 0.1, 1. We see from Figs. 1(a) and 1(b) that
Picard’s method converges to an approximate solution whose error decreases with the grid
size, but it may not converge if the grid is not sufficiently refined (for example, when
n = 50 in Fig. 1(b)).

In Fig. 2, we let vary the grid parameter n for k = 2, 10, 50, and 100 iterations. In
all cases a large number of points influenced in error decay although a slight divergence is
observed in case α = 1 (see Fig. 2(b)).

In Fig. 3, we study the behavior of λ on interval [−10,−1] considering a fixed mesh
given by n = 50 and n = 500 points respectively, and again admitting k = 2, 10, 50,
and 100 iterations for each analysis. Fig. 3(a) ensures that we are properly providing
convergent solutions for sufficiently large number of iterations. On the other hand, as
shown in Fig. 3(b), divergence may occur even in a fine mesh if k is too small.

Fig. 4 examines the impact of the choice α on values present in the interval [0, 3], fol-
lowing the same model as the previous figure. The comparisons show that when parameter
α > 1 there is a divergence in the solution even when the refinement is more emphasized.
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Figure 1: Relative error in terms of the number of iterations k.

Finally, we estimate the order of accuracy p associated with the grid spacing h. Initially,
we consider the relationship ek ≈ Chpk, where hk = (b− a)/nk, and compute p as follows:

pk ≈
log(ek/ek−1)

log(hk/hk−1)
. (11)
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Figure 2: Relative error in terms of the grid parameter n.
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Figure 3: Relative error in terms of the parameter λ. We employ α = 0.1.

where ek = ‖uk−uex‖/‖uex‖ is the real relative error. However, following de Vahl Davis [6]
and Roache [10], we can estimate the order of accuracy p associated with the grid spacing
hk without resorting to the exact solution:

p̃i,k =
log(|uk−2(xi)− uk−1(xi)|/|uk−1(xi)− uk(xi)|)

log(ζ)
. (12)

Herein, ζ is the refinement ratio, which must remain constant (i.e., hk−1/hk = ζ ∀k).
Since this estimate depends on the grid point xi, we consider the lowest one:

p̃k = min
0≤i≤nk−2

p̃i,k. (13)

In Table 1 we compare the orders of accuracy obtained in (11) and (13). Both estimates
suggest that the asymptotic order of accuracy is 2.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0307 010307-5 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0307


6

0 0.2 0.4 0.6 0.8 1
10

−4

10
−2

10
0

10
2

α

e
r

 

 

k= 2

k= 10

k= 50

k= 100

(a) n = 50

0 0.2 0.4 0.6 0.8 1
10

−4

10
−2

10
0

10
2

α

e
r

 

 

k= 2

k= 10

k= 50

k= 100

(b) n = 500

Figure 4: Relative error in terms of the parameter α. We employ λ = −10.

The results confirm that applying the simple trapezoidal rule to a subdivision of the
original interval of integration, we have a convergence with order O(h2).

4 Conclusions

An efficient and accurate numerical scheme based on the fixed-point and collocation
methods was proposed for solving a nonlinear Fredholm integral equation of second kind.
The numerical examples show that the accuracy improves with increase of n and iterations
number k. However, the variation in the parameters with λ and α (at fixed n) gives
an indication of how rapidly the solution curves are converging towards one another or
diverging away from one another. In the example considered herein, the convergence rate
of error is O(h2), but this rate may drop depending on the smoothness of the input data.
Theoretical verification of these error estimates is currently under study by the authors
and will be the subject of future work.
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