Tsallis Entropy-based mass and non-mass classification

Rafaela Souza Alcântara
Departamento de Ciência da Computação, UFBA, Salvador, BA
Perfilino Eugênio Ferreira Junior
Departamento de Matemática, UFBA, Salvador, BA
Aline Shayonara de Santana Ramos
Departamento de Engenharia da Computação, UFBA, Salvador, BA

1 Introduction

Breast cancer is the most frequent disease among women. In 2012 about 1.7 millions of new cases were registered around the world [1]. Screening mammography provides a significant reduction on breast cancer mortality rate and computational methods are improving this exam efficiency. This paper presents a new approach for mass and non-mass classification based on Tsallis entropy feature extraction from singular value decomposition (SVD).

2 Methodology

Figure 1 shows the pipeline of the process of this work.

Based on [2], gray-level co-occurrence matrix (GLCM) was calculated for each quantized image on database fixing a distance d and varying the direction θ. From GLCM results, SVD was applied using Equation (1).

$$ A = U_{(G \times G)} \Sigma_{(G \times G)} V_{(G \times G)}^T $$

where G corresponds to gray-level value ($G \in \{2^3, 2^4, 2^5, 2^6, 2^7, 2^8\}$), U and V matrices are composed by eigenvectors of AA^T and A^TA, respectively. Σ matrix represents the

1 rafaela.alcantara@ufba.br
2 perfeuge@ufba.br
3 shaysantanar@gmail.com
diagonal matrix ($\Sigma = \text{diag}(\sigma_1, \sigma_2, \sigma_3, \ldots, \sigma_G)$) composed by all singular values. These values were used then to calculate Tsallis entropy [3] through Equation (2)

$$S = \frac{1 - \sum_{i=0}^{G} (\sigma_i)^q}{q - 1} \quad (2)$$

where q is an real number that can be changed according to the application.

3 Results

Exhaustive tests were developed to refine q-index range and the best results were provided by $q \in [1.71, 1.79]$. The best results are described on Table 1.

Five metrics statistics were calculated over classification results: accuracy, sensibility, specificity, positive predict value and negative predict value.

<table>
<thead>
<tr>
<th>q</th>
<th>d</th>
<th>Statistics (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Acc.</td>
</tr>
<tr>
<td>1.73</td>
<td>1</td>
<td>82.2</td>
</tr>
<tr>
<td>1.76</td>
<td>1</td>
<td>84.2</td>
</tr>
<tr>
<td>1.79</td>
<td>1</td>
<td>82.6</td>
</tr>
</tbody>
</table>

4 Conclusions

The main proposal was to provide a novel approach for mass and non-mass classification based on Tsallis entropy extraction from SVD of GLCM matrices. To improve accuracy rate, q-index value were adjusted and the best value was provided for pair $(q, d) = (1.76, 1)$ where accuracy was 84.2%.

Referências

