
Proceeding Series of the Brazilian Society of Computational and Applied

Mathematics

3D simulations of phase separation with a liquid crystal

component

Rudimar Luiz Nós1

Departamento Acadêmico de Matemática, UTFPR, Curitiba, PR
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Abstract. We present three-dimensional numerical simulations of a binary mixture with
a nematic liquid crystal and flexible polymer phases using Model B, which is defined by
coupling the Cahn-Hilliard equation with the de Gennes-Prost equation. The model is
based on the Ginzburg-Landau free energy and the purpose of the work is to analyze in
three dimensions how the orientational distortion of the director field induced by interfacial
anchoring affects the morphology of the binary mixture.
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1 Introduction

Binary alloys and polymer blends have been extensively studied [2] [3] and sys-
tems in which one of the componentes is a liquid crystal are receiving more attention
[4] [5] [10] [12] [13] [18]. In this work4 we simulate numerically the phase separation ki-
netics of a three-dimensional binary system in which one of the components is a nematic5

liquid crystal and the other component is a flexible polymer with Ginzburg-Landay free
energy [11] [16] [17]. The system is modeled through an order parameter or phase field φ,
which is a measure of the volume fraction of one of the components, and a director field
n, which quantifies the mean orientational order in the nematic liquid crystal phase [8].
This model is called Model B according the nomenclature of Hohenber and Halperin [9]
and its dynamics are driven by energy minimization with conserved φ. Particularly, the
model that we employ differs from that considered by [19] because we keep both elastic
and anchoring terms in the Cahn-Hilliard equation.

1rudimarnos@utfpr.edu.br
2hdc@math.ucsb.edu
3roma@ime.usp.br
4This research has been funded by Capes.
5Relating to or denoting a state of a liquid crystal in which the molecules are oriented in parallel but

not arranged in well-defined planes.
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This work is a 3D extension of the study by Mata, Garcia-Cervera, and Ceniceros [11].
The numerical methodology is inspired from the works [6] [7] [14] [15].

2 Mathematical model

Model B can be described with a phase field φ related to the species concentration
and with the director field n, which is a measure of the mean molecular orientation in
the nematic liquid crystal phase. The pure, bulk phases are identified with φ = 1 (red
in simulations) and φ = −1 (blue in simulations) for the nematic liquid crystal and the
flexible polymer component, respectively. A narrow neighborhood of the level set φ = 0
provides a diffuse interface between the two species. The equations of the mathematical
model [11] [16] [17] are given by
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where µanch is given by
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{
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(5)

In Equations (1)-(5): φ1 = φ; γ = 1 is the constant mobility; λ is the mixing energy
density; ε is the capillary width; K is the elastic constant for splay, twist, and bend;
(|n| − 1)2/(2δ2) is a penalty term to approximately enforce the constraint |n| = 1; τ is
a measure of the relaxation time of the director; α and β are numerical parameters to
relax the time step stability constraint [1]; and A is the strength of the anchoring. The
planar anchoring energy density favors alignment of the director tangential to the interface
whereas for the homeotropic anchoring the alignment of n is perpendicular to it.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0311 010311-2 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0311


3

3 Numerical scheme

The numerical scheme is a linearly implicit discretization, as the one considered in [1]
and [7], in which the implicit part is discretized using a second-order backward difference
formula (BDF) and the explicit part corresponds to a second order Adams-Bashforth
method. The scheme can be written as

3
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In the simulations reported in this work we take α = 2 and β = 1. In addition, to limit
the terms (1+φ)/2 from exceeding 1 due to numerical overshoot, we approximate this term
by (1+sφ)/2 , where s = 0.90. Equations (6)-(12) are solved on a cube [0, 2]× [0, 2]× [0, 2]
with periodic boundary conditions. The spatial derivatives are discretized with standard
second order finite differences on a uniform grid 256×256×256 and linear systems arising
from the discretization are solved through the multigrid [6] [7] [14] [15]. The time step

∆t used is equal to 10−1 and spatial step h = ∆x = ∆y = ∆z is equal to
2

256
.

4 Results

Following [11] and [19], we take λ = 1.342 × 10−2, γ = 4 × 10−5, δ = 6.25 × 10−2,
and A = 6.708 × 10−3. To balance anchoring and elastic energy we select K = A. The

relaxation time τ is taken to be 1 and ε =
4

256
.
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To simulate spinodal decomposition with planar and homeotropic anchoring, we con-
sider initial condition starting from the slightly, randomly perturbed homogenous phase
φ ≡ 0. To this end, we take the initial order parameter φ0 at each grid point (xi, yj , zk)
to be φ0(xi, yj , zk) = 0.0 + ξijk, where ξijk is a uniformly distributed random number in
(−ε, ε). The parameter ε is the same as that in the mixing energy, i.e., a measure of the in-

terfacial thickness. The initial director field n0 is given by n0(xi, yj , zk) =
(1,1,ωijk)
√

2+ω2

ijk

, ωijk ∈

(−0.05, 0.05). Figures 1 and 2 show the director vector field of the spinodal decompo-
sition with planar and homeotropic anchoring, respectively. In both cases, it is possible
to verify that the phase separation occurs very slowly and there is the formation of a
coarsening pattern with a bicontinuous structure. The morphology and the coarsening
dynamics are both dramatically affected by the orientational distortions of the director
field. The nematic phase and the anchoring conditions largely control the morphology
and slow down the ordering kinetics. This can be proved comparing the simulations with
planar and homeotropic anchoring with simulations without anchoring, as those present in
[1] [7] [14] [15]. Figure 3 shows phase separation at later times. The initial islands merge
in horizontal lamellae in planar case (Figure 3(a)) and vertical lamellae in homeotropic
case (Figure 3(b)). These results are consistent with the 2D results found by Mata et
al [11].

(a) (b) (c)

(d) (e) (f)

Figure 1: Spinodal decomposition with planar anchoring: contour and isosurfaces (φ = 0)
with director field at t = 2050 ((a)-(b)), t = 13800 ((c)-(d)) and t = 24000 ((e)-(f)).

To simulate spinodal decomposition with nucleation, we take the initial condition
φ0(xi, yj , zk) = 0.5 + ξijk, where ξijk ∈ (−ε, ε). This corresponds to a small random
perturbation of the homogeneous state φ ≡ 0.5 where the liquid crystal is the dominant
component. The initial director field is selected as in planar and homeotropic cases. Fi-
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(a) (b) (c)

(d) (e) (f)

Figure 2: Spinodal decomposition with homeotropic anchoring: contour and isosurfaces
(φ = 0) with director field at t = 2050 ((a)-(b)), t = 13800 ((c)-(d)) and t = 23000
((e)-(f)).

(a) (b)

Figure 3: (a) Spinodal decomposition with planar anchoring: contour at x = 1 and
t = 18000; (b) spinodal decomposition with homeotropic anchoring: contour at y = 1 and
t = 18000.

gure 4 shows spinodal decomposition with nucleation and homeotropic anchoring. It can
be observed that the numerous drops defined by the initial condition coalesce forming a
single large drop.

5 Conclusions

We simulated, using Model B, three-dimensional spinodal decomposition of a two-
phase mixture where the components are a nematic liquid crystal and a flexible polymer.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Spinodal decomposition with nucleation and homeotropic anchoring: contour
and isosurfaces (φ = 0) with director field at t = 900 ((a)-(b)), t = 5050 ((c)-(d)) and
t = 18000 ((e)-(f)).

In the results of the simulations we can observe how the morphology of the separation is
affected by the director field. These results are consistent with the two-dimensional results
obtained by Mata et al [11].
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