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H (div) approximations based on hp-adaptive curved meshes
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Abstract. H(div)-conforming finite element subspaces based on curved quadrilateral meshes,
with hp-adaptation, are constructed to be applied in flux approximations of the mixed ele-
ment formulation. In order to validate the implementation, a test problem with square-root
singularity at a boundary point is simulated. The results demonstrate exponential rates of
convergence, and a dramatic error reduction when quarter-point elements are applied close
to the singularity. Using static condensation, the global condensed matrices to be solved
have reduced dimension, which is proportional to the dimension of border fluxes.
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1 Introduction

Several methods have been developed for the construction H(div)-conforming approx-
imations spaces to be applied in flux approximations of the mixed element formulation.
In some contexts the vector basis functions are constructed on the master element and
then they are transformed to the elements of the partition by Piola transformations, as
described in [2, 9]. The constructions of hierarchical high order spaces in [5, 11, 12] are
based on the properties of the De Rham complex.

Another methodology for the construction of H(div)-conforming approximation spaces
is proposed in [10], which has been extended to affine hp-adaptive meshes formed by
triangular or quadrilateral elements in [6], and to three-dimensional affine tetrahedral,
hexahedral and prismatic meshes in [4]. The principle is to choose appropriate constant
vector fields, based on the geometry of each element, which are multiplied by an available
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set of H1 hierarchical scalar basic functions. The assembling of the vector basis functions
is a direct consequence of the properties of the properly chosen vector fields, and of the
continuity of the scalar basic functions.

For the applications of the present paper, H(div)-conforming finite element subspaces
based on curved quadrilateral meshes, with hp-adaptation, are constructed. Therefore,
vectorial shape functions are firstly constructed on the master element, and then they are
mapped to the geometrical elements by the Piola transformation. The current interest is
on quarter point elements, which are widely used in fracture mechanics in order to adapt
their geometry to the behaviour of the solution close to a singular boundary point, which
have been originally developed by [1, 8]. For this kind of curved elements, scalar shape
functions inherit the singular behaviour of the geometric map, resulting in rational shape
functions.

For the results of the present paper, the implementation of the H(div) spaces using
hp-meshes with quarter point elements, and their consistent applications to flux approx-
imation on a mixed formulation, are performed in the NeoPZ 5 computational platform,
which is an open-source object-oriented project providing a comprehensive set of high
performance tools for finite element simulations, including hp adaptivity [3].

2 Approximation spaces in H(div,Ω)

Let Γ be a mesh on a domain Ω ⊂ R
2 formed by elements K. Approximation subspaces

in

H(div,Ω) =
{

q ∈ L2(Ω)2;∇.q ∈ L2(Ω)
}

,

which are defined piecewise over the elements of Γ, require that the local pieces qK = q|K
should be assembled by keeping continuous normal components across common element
edges. The proposed methodology used for the construction of such kind of approximation
subspaces follows a sequence of steps described below. We shall be concerned with quadri-
lateral meshes, without limitation on hanging sides and approximation order distribution
k = (kK).

1. To each element K, there is a geometric mapping x : K̂ → K, associating each
point ξ ∈ K̂ of the rectangular master element K̂ to a point p = x(ξ) ∈ K. An
isomorphism F : ϕ̂ → ϕ, mapping scalar functions of H1(K̂) to scalar functios of
H1(K), is induced by the geometric mapping. It also induces a contravariant Piola

transformation F
div : Φ̂ → Φ, an isomorphism mapping vector fields Φ̂ ∈ H(div, K̂)

to vector fields Φ ∈ H(div,K), which are defined in geometrical elements K by the
formula Φ = F[ 1

det JJΦ̂], where J = ∇x is the Jacobian of the geometric mapping.

2. A family of hierarchical bases BK̂
kK

= {Φ̂} is given, where the parameter kK refers
to the total degree of the polynomials in Qk(K) used in their definitions, as proposed
in [10]. The principle is to choose appropriate constant vector fields v̂, based on
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the geometry of the master element, which are multiplied by an available set of H1

hierarchical scalar basic functions ϕ̂ in order to get Φ̂ = ϕ̂v̂.

3. A family of hierarchical vectorial bases BK
kK

= {Φ} is defined over K by the Piola

transformation Φ = F
div(Φ̂). There are shape functions of interior type, with van-

ishing normal components over all element edges. Otherwise, Φ is classified as of
edge type, and its normal component on the edge associated to it coincides with the
restriction of the scalar shape function ϕ = Fϕ̂ used in its definition, and vanishes
over the other edges.

4. Construction of approximation subspaces ⊂ H(div,Ω) formed by functions q ∈
[

L2(Ω)
]2
, which are defined piecewise over the elements of Γ by local functions

qK = q|K ∈ span BK
kK

⊂ H(div,K). They can easily be assembled to get contin-
uous normal components on the elements interfaces. This property is obtained as
a consequence of the particular properties verified by the proposed vectorial shape
functions and of the continuity of the scalar shape functions used in their construc-
tion.

3 Application to mixed finite element formulation

Consider a model Poisson problem expressed as:

σ = −∇u in Ω, (1)

∇ · σ = f in Ω, (2)

u = ud on Γd, (3)

∇u · η = g on ΓN , (4)

where Ω ⊂ R
2 is the computational domain with Lipchitz boundary ∂Ω = Γd ∪ ΓN ,

Γd ∪ ΓN = ∅, where Γd and ΓN denotes the Dirichlet and Neumann boundary condition
respectively and η denotes the outward unit normal to boundary.

This problem can be expressed in the form: to find u ∈ U = L2(Ω) and σ ∈ V =
{q ∈ H(div,Ω) : q · η|ΓN

= −g}, such that ∀ϕ ∈ U and ∀q ∈ H(div,Ω), with q ·η|ΓN
= 0,

a(σ,q) + b(q, u) = c(q),
b(σ, ϕ) = ℓ(ϕ)

(5)

where a(σ,q) =
∫

Ω σ · q dΩ, b(q, u) = −
∫

Ω u∇ · q dΩ, c(q) = −
∫

Γd

ud q · η ds and

ℓ(ϕ) = −
∫

Ω f ϕ dΩ. In typical H(div)-conforming discretized versions of the mixed
formulation, approximate solutions σh and uh are searched in finite dimensional subspaces
Vh ⊂ V and Uh ⊂ U .

In matrix form, the discrete version of system (5) can be written as

(

A BT

B 0

)(

σh

uh

)

=

(

−ch
−fh

)

, (6)
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where the matrices A and B correspond to discrete versions of the bilinear forms a(σ,q)
and b(σ, ϕ). The vectors σh and uh denote the dual and primal degrees of freedom, ch
referes to the discrete duality term

∫

Γd

ud q ·ηds and fh is associated to the L2 projection
of the forcing term on Uh.

4 Approximation spaces

Following the developments in [4], we shall consider two stable configuration cases for
approximation spaces to be used for primal u and dual σ variables in discretized versions of
the mixed formulation. In both cases, the primal variable is approximated in subspaces of
L2(Ω) formed by piecewise functions u|K = uK = FûK , without any continuity constraint,
as in typical discretized mixed formulations [2].

The first configuration considers uK mapped from polynomials ûK ∈ QkK , of variable
maximum degree kK . The dual variable σ is searched in approximation spaces ⊂ H(div,Ω)
formed by vectorial functions Q such that qK = q|K ∈ span BK∗

kK
, where the bases

BK∗

kK
⊂ BK

kK+1 are formed by enriching BK
kK

with interior shape functions Φ = F
div(Φ̂),

corresponding to Φ̂ ∈ BK̂
kK+1 whose divergence ∇ · Φ̂ ∈ QkK . This is the type of RTk

approximations. The resulting set of approximations spaces is classified as being of Q∗

k
Qk

type.

Another type of approximation configuration is classified as being of Q∗∗

k
Qk+1 type,

where the primal approximations uK are mapped from polynomials ûK ∈ QkK+1, and Q∗∗

k

refers to vectorial approximation spaces spanned by bases BK∗∗

kK
⊂ BK∗

kK+1, where the edge
functions are restricted to those ones of Q∗

k
type.

As explained in [4], when computing sufficiently smooth solutions using Q∗

k
Qk space

configurations based on affine regular meshes, optimal convergence rates of identical ap-
proximation orders k+1 are obtained for primal and dual variables, as well for ∇ ·σ. For
the Q∗∗

k
Qk+1 configuration, higher convergence rate of order k + 2 is obtained for the

primal variable. Furthermore, after static condensation is applied, the condensed systems
to be solved only involves the flux edge terms and a constant value for u in each element,
and thus they have the same dimension in both space configuration.

5 Test problem and adaptive hp-refinement process

A model problem is considered with f = 0, and Ω = [−0.5, 0.5] × [0, 0.5], where the
exact solution is the harmonic function given in polar coordinates by u = 21/4

√
r cos(θ2),

that presents a square root singularity at at the boundary point (x, y) = (0, 0) (r = 0),
where there is a change from Dirichlet boundary condition u = 0, for x < 0, to Neumann
condition ∇u · η = 0, for x > 0. Elsewhere, Neumann boundary condition is taken.

This test problem has been used in [7] to compare the performance of different finite
element formulations, including continuous, discontinuous, mixed and primal hybrid finite
element methods. As expected, the application of hp-refinement improves considerably
the performance of all methods.
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Quarter point elements are defined by an 8-node quadratic geometry element with two
side nodes moved to one quarter of the side. By moving the two side nodes, the scalar
shape functions inherit the singular behaviour of the geometric map and result in rational
shape functions.

Figure 1: Illustration of the hp refinement process: initial mesh (top-left side), mesh after
one refinement step (top-right side); mesh at the final refinement step (bottom-left side),
and zoom in at the singular point (bottom-right side).

The construction of hp-adpative meshes with quarter-point elements is illustrated in
Figure 1.

Our purpose is to use this kind of meshes for the simulation of the test problem by the
mixed formulation using the space configurations of Q∗

k
Qk and Q∗∗

k
Qk+1 types. Figure

2 shows the calculated L2-norms of the dual and primal errors using these sequences of
hp-adaptive curved meshes versus the number of equations solved after static condensa-
tion. For comparison, results for similar rectangular hp-meshes, without using quarter
point elements, and for uniform meshes with constant k = 2 distribution are plotted.
The results demonstrate exponential rates of convergence when using hp-adaptive meshes,
and the dramatic error reduction when quarter-point meshes are applied. Furthermore,
the accuracy in the primal variable improves when quarter point meshes and Q∗∗

k
Qk+1

configuration are applied.
The effect of static condensation is also verified in terms of the size reduction of the

global system to be solved, which is more significant with increasing order of approx-
imation. At the finest levels of mesh refinement, the number of condensed equations
amounts to more than 95% of the total number of equations, as shown in the Figure 3,
which demonstrates the potential benefit of using H(div) approximation spaces in parallel
computers.
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Figure 2: L2-error in σ (left side), and in u (right side) using the mixed formulation based
on Q∗

k
Qk (cicle), and Q∗∗

k
Qk+1 (triangle) space configurations for hp curved meshes

with quarter point elements (continuous lines), and similar hp rectangular meshes (dashed
lines). The simple dotted curves correspond to simulations for uniform rectangular meshes
with constant k = 2 distribution.

The CPU time necessary for computing the stiffness matrix of a quarter point element
is the same as for any other H(div) element. As a standard procedure, our finite element
library condenses the internal degrees of freedom of each element before assembling the
global system of equations. The element matrices (and their static condensation) are
performed in parallel, and the decomposition of the global system of equations is done
serial. The NeoPZ finite element library also includes a frontal solver, where computation
of element matrices and their decomposition is done simultaneously, in parallel.

Figure 3: The effect of static condensation: condensed degrees of freedom (%) at each
level of the hp-meshes.
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