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Abstract. In this work we evaluate two multiscale methodologies to solve compressible
flow problems, named, Dynamic Diffusion (DD) and Nonlinear Multiscale Viscosity (NMV),
using the well know predictor-multicorrector time integration scheme. The subgrid scale
space is defined using bubble functions whose degrees of freedom are locally eliminated in
favor of the degrees of freedom that live on the resolved scales. The time integration schemes
assume that the resolved coarse scale advances in time by second order approximation and
the unresolved scale can advance by first and second order approximations. Performance
and accuracy comparisons are conducted based on benchmark 2D problems.
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1 Introduction

Numerical solutions of the compressible flows may exhibit global spurious oscillations,
especially near shock regions. More accurate and stable results can be obtained consid-
ering variational multiscale formulations [1]. In a general sense, each of these alternative
methodologies are based on adding some type of stabilization to the standard Galerkin
formulation and usually depends on the definition of one or more tuning parameters that
usually play crucial role on the accuracy of the final solution.

Arruda et al. [2] presented a nonlinear multiscale method, named Dynamic Diffusion
(DD), to solve advection dominated transport problem, where the subgrid space is con-
structed by bubbles functions defined into elements and the amount of nonlinear diffusion
is similar to the method presented in [3], but adding in both scales (subgrid and coarse)
of the discretization. This methodology was extended to the compressible Euler equations
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in [4] and recently, it was improved by [5] and renamed the Nonlinear Multiscale Viscosity
(NMV) method. The basic idea of the NMV method, as the DD method, is to add a
nonlinear artificial viscosity in all scales of the discretization, but the amount of artificial
viscosity is defined by the stabilization parameter of the YZβ method, as proposed in [6].

The remainder of this work is organized as follows. Section 2 briefly addresses the
governing equations and the variational multiscale formulation. Numerical experiments
are conducted in Section 3 to show the behavior of the multiscale finite element methods
for two-dimensional test problems for the Euler equations. Section 4 concludes this paper.

2 Governing Equations and Variational Multiscale Formu-
lation

The two-dimensional Euler equations in conservative variables, U = (ρ, ρu, ρv, ρe),
without source terms are an inviscid system of conservation laws represented by

∂U

∂t
+ Ax

∂U

∂x
+ Ay

∂U

∂y
= 0, on Ω× [0, Tf ], (1)

where ρ is the fluid density, u = (u, v) is the velocity vector, e is the total energy per unit

mass, Ax = ∂Fx
∂U and Ay =

∂Fy
∂U where Fx and Fy are the Euler fluxes, Ω is a domain in

R2, and Tf is a positive real number, representing the final time. Associated to Eq. (1)
we have a proper set of boundary and initial conditions.

To define the finite element discretization, we consider a triangular partition TH of the
domain Ω into nel elements, where: Ω =

⋃nel
e=1 Ωe and Ωi ∩ Ωj = ∅, i, j = 1, 2, · · · , nel,

i 6= j. We introduce the space VE , that is written as the direct sum, VE = Vh⊕VB, where
the subspaces Vh and VB are given by

Vh = {Uh ∈ [H1(Ω)]4 | Uh|Ωe ∈ [P1(Ωe)]
4,Uh · ek = gk(t) in Γgk};

VB = {UB ∈ [H1
0 (TH)]4 | UB|Ωe ∈ [span(ψB)]4, ∀Ωe ∈ TH},

where P1(Ωe) represents the set of first order polynomials in Ωe, ψB is a bubble function
(0 ≤ ψB ≤ 1 and ψB ∈ H1

0 (TH)) and H1, H1
0 are Hilbert spaces. The space Vh represents

the resolved (coarse) scale space whereas VB stands for the subgrid (fine) scale space (Fig.
1).

Figure 1: VE Representation: • stands for Vh nodes and ◦ stands for VB
nodes.
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Multiscale methods addressed in this paper for the Euler equation consists of find
UE = Uh + UB ∈ VE with Uh ∈ Vh, UB ∈ VB such that∫

Ω
WE ·

(∂UE

∂t
+ Ah

x

∂UE

∂x
+ Ah

y

∂UE

∂y

)
dΩ +

nel∑
e=1

∫
Ωe

δ∗h

(∂WE

∂x
· ∂UE

∂x
+
∂WE

∂y
· ∂UE

∂y

)
dΩ = 0, ∀WE ∈ VE , (2)

where WE = Wh + WB ∈ VE with Wh ∈ Vh, WB ∈ VB and the amount of artificial
viscosity is calculated on the element-level. For the DD method inspired by the CAU
shock-capturing viscosity parameter [7]:

δDD
h =


1
2µ(~)

‖R(Uh)‖
Ã−1
0

‖∇ξUh‖Ã−1
0

, if ‖∇Uh‖Ã−1
0
> tolδ;

0, otherwise,

(3)

where µ(~) =
√

2Ae is the element length, Ae is the element area, Ã
−1

0 is the Jacobian of
the transformation between the entropy and conservation variables [8]. For the other hand,
the NMV method is defined by considering the YZβ shock-capturing viscosity parameter
[6]

δNMV
h = ‖Y−1R(Uh)‖

(
nsd∑
i=1

∣∣∣∣∣∣∣∣Y−1∂Uh

∂xi

∣∣∣∣∣∣∣∣2
)β

2
−1

‖Y−1Uh‖1−β
(
h

2

)β
, (4)

where

R(Uh) =
∂Uh

∂t
+ Ah

x

∂Uh

∂x
+ Ah

y

∂Uh

∂y

is the residue of the problem on Ωe, Y is a diagonal matrix constructed from the reference
values of the components of U, given by Y = diag ((U1)ref , (U2)ref , (U3)ref , (U4)ref) , h is
the local length scale defined as in [6] by

h = 2

(∑
a

|j · ∇Na|

)−1

, where j is a unit vector defined as j =
∇ρ
‖∇ρ‖

and Na is the interpolation function associated with node a. It is important to note
that, the local length h is defined automatically taking into account the directions of high
gradients and spatial discretization domain. Generally, the parameter β is set as β = 1
for smoother shocks and β = 2 for sharper shocks. The compromise between the β = 1
and β = 2 selections as was defined in [6] we consider the following average expression for
δNMV
h = 1

2

(
δNMV
h |β=1 + δNMV

h |β=2

)
.

The time integration schemes considered assume that the resolved coarse scale advances
in time by second order approximation and the unresolved scale can advance by first and
second order approximations. In the numerical experiments we considered the following
notation: NMV-FP (or DD-FP) for first order and NMV-SP (or DD-SP) second order
approximations.
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3 Numerical Experiments

In this section we present numerical experiments considering two well known 2D bench-
mark problems: ‘oblique shock’ and ‘blast wave/explosion’, discretized by unstructured
triangular meshes using Delaunay triangulation through the software Gmsh6. First prob-
lem used GMRES with 5 vectors to restart, tolerance equal to 10−5, the number of mul-
ticorrections fixed to 3, the time-step size is 10−3 and the simulation is run until 3000
steps. Second problem used GMRES with 30 vectors to restart, tolerance equal to 10−5,
the number of multicorrections fixed to 3, the time-step size is 10−3 and the simulation is
run until 250 steps. We compare the NMV method with the DD method. The tests were
performed on a machine with an Intel Core i7-4770 3.4 GHz processor with 16GB of RAM
and Ubuntu 12.04 operating system.

3.1 2D Oblique Shock Problem

The first problem is a Mach 2 uniform flow over a wedge, at an angle of −10◦ with
respect to a horizontal wall. The solution involves an oblique shock at an angle of 29.3◦

emanating from the leading edge of the wedge, as shown in Fig. 2(a). The compu-
tational domain is a square with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Prescribing the fol-
lowing inflow data on the left and top boundaries results in a solution with the fol-
lowing outflow data: inflow (ρ, u, v, p) = (1.0, cos 100, − sin 100, 0.17857) and outflow
(ρ, u, v, p) = (1.45843, 0.88731, 0.0, 0.30475). Four Dirichlet boundary conditions are
imposed at the left and the top boundaries, the condition v = 0 is set at the bottom
boundary, and no boundary condition is imposed at the outflow (right) boundary.

(a) Problem description.
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(b) Density profiles at x = 0.9.

Figure 2: Problem description and density profile along x = 0.9 obtained using DD-FP,
DD-SP, NMV-FP and NMV-SP schemes, with the reference solution - 2D Oblique Shock
Problem

6Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities.
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For all simulations we consider an unstructured mesh consisting of 1,676 nodes and
3,202 elements. Figure 2(b) shows the density profile along x = 0.9, obtained with DD-
FP, NMV-FP and NMV-SP methods. The solution obtained with the DD-FP present
oscillations on the left and right of the shock, whereas the solution obtained with the
NMV method is more accurate and requires less gmres iterations (Table 1) than the DD
method. Additionally, NMV-FP and NMV-SP are indistinguishable. It is important to
note that the convergence is not achieved by the DD-SP scheme.

Table 1: Computational performance - 2D Oblique Shock Problem.

Methods GMRES Iterations CPU Time (s)

DD-FP 129,636 366.116

DD-SP - -

NMV-FP 111,910 325.875

NMV-SP 100,562 238.815

3.2 2D Explosion Problem

We consider the explosion problem for an ideal gas with γ = 1.4 as described by [9].
The 2D Euler equations are solved on a 2.0 × 2.0 square domain in the xy−plane. The
initial condition consists of the region inside of a circle with radius R = 0.4 centered at
(1, 1) and the region outside the circle, see Fig. 3(a). The flow variables are constant in
each of these regions and are separated by a circular discontinuity at time t = 0. The two
constant states are chosen as inside the circle (ρ, u, v, p) = (1.0, 0.0, 0.0, 1.0) and outside
the circle (ρ, u, v, p) = (0.125, 0.0, 0.0, 0.1).

For all simulations we consider an unstructured mesh consisting of 13,447 nodes and
26,492 elements. A reference solution was used considering a fine mesh with 1000× 1000
computing cells by WAF method as described in [9]. Figure 3(b) compares the radial
variations of the density, obtained with DD-FP, DD-SP, NMV-FP and NMV-SP schemes.
In general the solution obtained by second order approximation for the unresolved scale
is more accurate than the solution obtained by first order for both methods (DD and
NMV). The solutions obtained with the DD-SP and NMV-SP schemes are similar, but
the solution given by the NMV-SP is slightly more accurate than the solution by the DD-
SP. Figure 4 shows the 3D density solutions, obtained with DD-FP, DD-SP, NMV-FP and
NMV-SP schemes. Although the DD method requires less GMRES iterations than the
NMV method (Table 2), the NMV method provides high quality global solutions, as we
can see in Fig. 4.

4 Conclusions

In this work we evaluate two multiscale methodologies to solve compressible flows
problems: Dynamic Diffusion (DD) and Nonlinear Multiscale Viscosity (NMV) methods,
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(a) Problem description.
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(b) Density profiles.

Figure 3: Problem description and comparisons of radial variations of density obtained
using DD-FP, DD-SP, NMV-FP and NMV-SP schemes, with the reference solution - 2D
Explosion Problem.

Table 2: Computational performance - 2D Explosion Problem.

Methods GMRES Iterations CPU Time (s)

DD-FP 8,819 220.634

DD-SP 8,446 176.954

NMV-FP 13,087 298.860

NMV-SP 11,669 220.318

Density

0.103 0.712

(a) DD-FP
Density

0.108 1.02

(b) DD-SP
Density

0.125 0.977

(c) NMV-FP
Density

0.12 0.998

(d) NMV-SP

Figure 4: Density distribution 3D solution at time t = 0.25.
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where the subgrid scale space is defined using bubble functions whose degrees of freedom
are locally eliminated in favor of the degrees of freedom that live on the resolved scales. The
performance and accuracy comparisons conducted based on the ‘oblique shock’ and ‘blast
wave/explosion’ problems show us that the NMV method clearly shows more robustness
than the DD method. Additionally, the NMV method provides global solutions more
accurate.
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