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Abstract. The purpose of the present paper is to analyse different possibilities of choosing
balanced pairs of approximation spaces for dual (flux) and primal (pressure) variables to
be used in discrete versions of the mixed finite element method for affine two dimensional
meshes. In all space configurations, the principle guiding their construction is the property
that the divergence of the dual space and the primal approximation space should coincide,
while keeping the same order of accuracy for the flux variable and varying the accuracy
order of the primal variable. There is the classic case of BDMk spaces based on triangular
meshes and polynomials of total degree k for the dual variable, and k − 1 for the primal
variable, showing stable simulations with optimal convergence rates of orders k + 1 and k,
respectively. Another case is related to RTk and BDFMk+1 spaces for quadrilateral and
triangular meshes, respectively. It gives identical approximation order k+ 1 for both primal
and dual variables, an improvement in accuracy obtained by increasing the degree of primal
functions to k, and by enriching the dual space with some properly chosen internal shape
functions of degree k + 1, while keeping degree k for the border fluxes. A new type of
approximation is proposed by further incrementing the order of some internal flux functions
to k + 2, and matching primal functions to k + 1 (higher than the border fluxes of degree
k). Thus, higher convergence rate of order k + 2 is obtained for the primal variable. Using
static condensation, the global condensed system to be solved in all the cases have same
dimension (and structure), which is proportional to the space dimension of the border fluxes
for each element geometry.
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1 Introduction

Mixed finite element methods have the ability to provide accurate and locally conser-
vative fluxes, an advantage over standard H1 finite element discretizations [4]. They are
based on simultaneous approximations of the primal (pressure) and dual (flux) variables,
involving two kinds of approximation spaces. H(div)-conforming approximation spaces are
used for the dual variable, with continuous normal components over element interfaces,
and the primal variable is usually represented in discontinuous finite element spaces.

Since the pioneering work by Raviart and Thomas [6] in 1977, different constructions
of H(div) approximation spaces have been proposed in [2, 3, 5]. Recently, several other
papers have appeared in the literature due to increasing interest on this subject [1, 7].

The main purpose of this article is to analyse different ways of choosing balanced
pairs of approximation spaces (Vh, Uh), for dual and for primal variables, based on affine
triangular and quadrilateral meshes, to be used in discrete versions of the mixed finite
element method for two dimensional elliptic problems. The methods share the following
basic characteristics:

1. The flux approximation spaces Vh are spanned by a hierarchy of vectorial shape
functions, which are organized into two classes: the shape functions of interior type,
with vanishing normal components over all element edges, and the shape functions
associated to the element edges.

2. In all the cases, the commutation De Rham property holds. Specifically,

∇ ·Vh = Uh, (1)

implying stable simulations with optimal L2-error convergence orders, which are
dictated by the degree of the complete set of polynomials used in the approximations.

All the implementations of the present paper are performed in the object-oriented sci-
entific computational environment NeoPZ 6. This is a general finite element approximation
software organized by modules for a broad classes of technologies, incorporating a variety
of element geometries, variational formulations, and approximation spaces.

The paper is organized as follows. The mixed element formulation for an elliptic model
problem is set in Section 2. The proposed approximation space configurations are described
in Section 3, where the static condensation strategy is stated for them. The results of the
applications of these approximation spaces on discrete formulations of a model problem
are discussed in Section 4. Section 5 gives the final conclusions of the article.

2 Mixed finite element method for a model problem

Consider a model Poisson problem expressed as:

σ = −∇u in Ω,

∇ · σ = f in Ω,

u = 0 in ∂Ω,

6http://github.com/labmec/neopz
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where Ω ⊂ R2 is the computational domain with Lipchitz boundary ∂Ω. As studied in [4],
the classical mixed formulation for this problem requires the space

H(div,Ω) =
{
q ∈

[
L2(Ω)

]2
;∇ · q ∈ L2(Ω)

}
,

and to find (σ, u) ∈ V × U = H(div,Ω)× L2(Ω) such that

a(σ,q) + b(q, u) = 0, (2)

b(σ, ϕ) = `(ϕ), (3)

where a(σ,q) =
∫

Ω σ · q dΩ, b(q, u) = −
∫

Ω u∇ · q dΩ,and `(ϕ) = −
∫

Ω f ϕ dΩ.

In typical H(div)-conforming discretized versions of the mixed formulation, approxi-
mate solutions for dual σ and primal u variables are searched in finite dimensional sub-
spaces Vh ⊂ V and Uh ⊂ U , and the system of variational equations (2)-(3) are enforced
by test functions q ∈ Vh and ϕ ∈ Uh.

3 Types of approximation space configurations

Three cases for the choice of approximation space configuration (Vh, Uh) shall be
considered. For their definitions, there are polynomial spaces Pk used in the construction
of scalar approximations for the primal variable, where the index k refers to polynomial
degree. For triangular, the polynomials in Pk have total degree k, and for quadrilateral,
they have maximum degree k in each coordinate. Vectorial polynomial spaces Pk mean
that the components of the vectorial shape functions are obtained from polynomials in Pk.

Approximation space configuration of type PkPk−1. For this configuration, the
dual approximation space is of type Pk, based on complete vector valued polynomials
of degree k, and the primal approximation space Pk−1 is based on the complete scalar
valued polynomials of degree k − 1. However, this kind of space configuration satisfying
property (1) can only be valid for triangular meshes, corresponding to the classic BDMk

elements [3], with L2-error convergence of orders k+1 and k for dual and primal variables.

Approximation spaces of type P∗
kPk. For triangular and quadrilateral geometries,

another type of space configuration can be considered. Guided by the verification of
property (1), the dual approximations in Vh are said to be of P∗

k type if they are locally
spanned by the face functions of Pk type, and by the internal shape functions of Pk+1

defined by vectorial polynomials of degree k+1 whose divergence are included in the primal
approximation space of type Pk. Since the incomplete dual approximation space of type
P∗

k only involves the complete vector valued polynomials of degree k, in simulations using
P∗

kPk configurations the expected L2-error convergence rates are of order k + 1 for both
dual and primal variables. This is the type of RTk space configuration for quadrilateral
geometries [6], and of BDFMk+1 elements for triangular elements [2].

Approximation spaces of type P∗∗
k Pk+1. This is a new space configuration, where the

construction of dual approximation spaces of type P∗∗
k consists in adding to the complete
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vector valued spaces of type Pk those interior shape functions of P∗
k+1 defined by vectorial

polynomials of degree k + 2 whose divergence are included in the primal approximation
space of type Pk+1. Therefore, in P∗∗

k the face shape functions are still obtained by
polynomials of degree ≤ k, but some of the internal shape functions may be obtained from
polynomials of degree up to k+2. As in the previous case, here the verification of property
(1) is the basic principle guiding the definition of the pair of approximation spaces. Since
the spaces of type P∗∗

k contains only the complete vector valued approximations of type
Pk, the L2-error convergence rate of order k+1 is expected for the dual variable. However,
for primal variable a higher order k + 2 of convergence may be reached.

Vectorial shape functions. For the numerical tests presented in the next section for
affine partitions, flux approximations are expressed in terms of vectorial shape functions
forming bases of type Pk, P∗

k and P∗∗
k . The numbers of these vectorial shape functions

are presented in Table 1. The methodology adopted here for their construction is an
extension of previous developments in [7], where the principle is to choose appropriate
constant vector fields, based on the geometry of each element of a given partition of the
computational region Ω, which are multiplied by an available set of H1 hierarchical scalar
basic functions to obtain the vectorial shape functions.

Table 1: Number of vectorial shape functions in the bases of type Pk, P∗
k and P∗∗

k

Element Type Edge Internal Total

Pk 3(k + 1) k2 − 1 (k + 1)(k + 2)

Triangular P∗
k 3(k + 1) (k + 1)2 − 1 3 + k(k + 5)

P∗∗
k 3(k + 1) (k + 1)2 − 1 (k + 1)(k + 6)

Pk 4(k + 1) 2(k2 − 1) 2(k + 1)2

Quadrilateral P∗
k 4(k + 1) 2k(k + 1) 2(k + 1)(k + 2)

P∗∗
k 4(k + 1) 2(k + 1)(k + 2) 2(k + 1)(k + 4)

Static condensation. When using these kinds of approximations in the mixed formula-
tion, the degrees of freedom of the flux may be organized in the form σih, σeh, where σih
and σeh refer to internal and edge components of the flux, respectively. For the pressure,
a scalar value is denoted by u0h, and uih are the values of the pressure approximation
except u0h. Thus, the system (2)-(3) may be represented in the matrix form

Aii BT
ii BT

ie Aie

Bii 0 0 Bie

Bie 0 0 Bee

Aei BT
ie BT

ee Aee




σih

uih

u0h

σeh

 =


0
−fih
−f0h

0

 .

Then, static condensation may be applied by eliminating the internal degrees of freedom
σih and uih, to get a condensed system in terms of σeh and u0h. On each element,
the dimension of the static condensed matrix is determined by the number of degrees
of freedom of the face components σeh plus one, which coincides for the approximations
spaces of types PkPk−1, P∗

kPk and P∗∗
k Pk+1.
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4 Numerical results

The adopted test problem is defined in Ω = (0, 1)2, and has exact solution u(x, y) =
sin(πx) sin(πy). Uniform quadrilateral meshes are considered with spacing = 2−i, i =
0, 1, · · · , 5, and the triangular meshes are constructed from them by diagonal subdivision.

In the top side of Figure 1, the convergence curves are for triangular meshes, and
the results are obtained with approximation spaces of type PkPk−1 (dotted lines), P∗

kPk

(continuous lines), P∗∗
k Pk+1 (dashed lines), for k = 1 (magenta lines), k = 2 (blue lines),

k = 3 (red lines) and k = 4 (black lines). For the flux variable, optimal convergence rate
k+1 occur for all the configurations. It is also noticeable that the P∗

kPk and P∗∗
k Pk settings

present very close flux error magnitudes, specially at the higher levels of refinement. For
the primal variable, optimal convergence rates of orders k, k + 1 and k + 2 is verified for
PkPk−1, P∗

kPk, and P∗∗
k Pk+1 type of spaces, respectively. It is also interesting to note

that the pressure error curves using approximation spaces of the same order in primal
variable almost coincide, independently of the type of approximation space used for the
flux. For instance, the configurations P4P3, P∗

3P3, and P∗∗
2 P3 give almost the same error

magnitudes for the pressure, with quite different error magnitudes for the flux.

Using the uniform quadrilateral meshes, the L2-errors are presented in the bottom
side of Figure 1 for approximation spaces of types P∗

kPk (continuous lines), and P∗∗
k Pk+1

(dashed lines). The expected optimal rates for dual and primal variables are obtained,
and similar conclusions arise as in the triangular case.

The curves in Figure 2 illustrate the effectiveness of the static condensation procedure
in the reduction of degrees of freedom in the mixed method. Using meshes with spacing
h = 1/32, it can be observed that the efficiency is specially significant for higher accuracy
levels. For instance, using triangular meshes, and k = 4, the percentages of condensed
degrees of freedom are about 87% , 82% and 75% for the mixed method with configurations
P∗∗

k Pk+1, P∗
kPk, and PkPk−1, respectively. Furthermore, it can also be observed that this

gain in efficiency is more noticeable for quadrilateral elements, where these percentages
are about 90%, and 86% for P∗∗

k Pk+1, and P∗
kPk configurations.

5 Conclusions

Different ways of choosing balanced pairs of finite element approximation spaces, based
on triangular and quadrilateral meshes, are considered and compared for dual and pri-
mal variables for discrete versions of the mixed finite element method for affine meshes.
Convergence studies are presented using families of hierarchical shape functions specially
designed for affine meshes, which are constructed from polynomials of total degree k for
triangle and of maximum degree k for quadrilateral elements.

For triangular meshes, there is the combination of spaces of type PkPk−1. Other
configurations denoted by P∗

kPk and P∗∗
k Pk+1 are analysed for triangular and quadrilateral

geometries. The settings P∗
k and P∗∗

k are obtaining by enriching the complete flux space of
type Pk with some internal flux functions with degree up to k+1 or k+2, respectively. As
expected, optimal rates in L2-norms for primal and dual variables are observed, which are
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Figure 1: L2-errors for the flux (left side) and pressure (right side) versus h, with spaces of type

PkPk−1 (dotted), P∗
kPk (continuous), and P∗∗

k Pk+1 (dashed ), for k = 1 (magenta), k = 2 (blue),

k = 3 (red), and k = 4 (black) in the mixed formulation based on regular triangular meshes (top

side), and quadrilateral meshes (bottom side).
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Percentage of condensed degrees of freedom in the mixed formulation with spaces of type P∗
kPk

(blue), P∗∗
k Pk+1 (red), and PkPk−1 (magenta).

determined by the degree of the complete polynomial spaces included in the corresponding

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0320 010320-6 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0320


7

approximations spaces.
In fact, the convergence rates of order k + 1 for the dual variable do not change by

increasing the degrees of internal flux functions, as documented in P∗
k and P∗∗

k . But higher
optimal convergence rates (i.e. k + 1 and k + 2) are obtained for the pressure variable
when using the P∗

k Pk and P∗∗
k Pk+1 function spaces, respectively, which are higher than

the order k obtained when using the PkPk−1 configuration. Because the meshes are affine,
and ∇ · σh results to be the L2(Ω)-projection of ∇ · σ on Uh, then the divergence error
||∇σ −∇ · σh||L2(Ω) has the same accuracy rate as for the error in u.

In all three settings, the degrees of freedom associated with internal flux functions can
be condensed, resulting in global matrices with identical sizes. For high order approxima-
tions, the number of condensed equations amounts to more than 80% of the total number
of equations, which demonstrates the potential benefit of using H(div) approximation
spaces in parallel computers.

The authors are currently extending the methodology for three dimensional geometries,
and for curved elements.
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