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Abstract. A stabilized hybrid dual-mixed finite element formulation is proposed to the
elasticity problem in displacement and stress fields and a Lagrange multiplier identified a
priori as the trace of the displacement field on the edges of the elements. The stabilization
mechanisms, used to overcome the local compatibility condition (Ladyzhenskaya-Babuska-
Brezzi condition), are activated by adding least squares residual forms of the governing
equations in domain and on element boundary. Features of the formulation such as consis-
tency, stability and local conservation are discussed. Numerical results for problems with
smooth solution confirming optimal rates of convergence are presented.
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1 Introduction

It is well-known that the mixed formulations are difficult to handle and to implement
with their corresponding algebraic systems indefinite in general. To obtain enhanced
stability without requiring much compatibility condition between spaces Loula et al. in [3]
and Franca et al. in [2] proposed stabilized finite elements methods for structural mechanic
such as Timoshenko beam and incompressible elasticity, so on. These type of stabilizations
are derived by adding weighted residual forms of the governing equations to the mixed
Galerkin formulation. In this case, are obtained the well-posedness of the formulation
without compromising the flexibility in the choice of the approximation spaces.

Important contributions using discontinuous Galerkin methods have been presented
for linear elasticity. We highlight the mixed formulations of Local Discontinuous Galerkin
(LDG) developed by Cockburn, Schötzau and Wang [1]. A hybridized version of this for-
mulation was presented by Soon, Cockburn and Stolarski in [5]. In Loula [4] is proposed a
stabilized dual mixed-hybrid finite element method (SHDM-FEM) for Helmholtz problem.
The stabilizing mechanisms are given by adding least squares residual of the governing
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equations in domain and on element boundary, but using discontinuous piecewise polyno-
mials on a finite element partition. The continuity conditions are weakly enforced. In
this hybrid method the only globally coupled degrees of freedom are those associated with
the approximation of the displacement on boundary of the elements. The displacement
and stress approximations in the interior of the elements are calculated using element-by-
element post-processing.

An outline of the paper is organized as follows. In Section 2 we introduce the model
problem of linear isotropic elasticity. In the Section 3 and 4 we present and discuss
some properties of the stabilized and hybridized dual-mixed finite element formulation.
Numerical experiments illustrating the convergence rate of the proposed method are shown
in Section 5 and some concluding remarks are presented in Section 6.

2 Model Problem

Let Ω be a bounded open domain in Rnsd , nsd = 2, 3, occupied by a deformable
medium, with Lipschitz-continuous boundary Γ = ∂Ω and subject to external body force
f : Ω→ Rnsd . The isotropic linear elasticity problem is given as following.
S Problem: Find the displacement u(x): Ω −→ Rnsd and the Cauchy stress tensor
σ(x): Ω −→ Rnsd×nsd

sym , ∀x ∈ Ω, such that

div (σ) + f = 0 in Ω (equilibrium equation), (1)

Dσ = ε(u) in Ω (constitutive equation), (2)

where the small strain tensor is given as the symmetrical part of the displacement gradient,
ε(u) = ∇Su, and the boundary conditions are

u(x) = ḡD ∀ x ∈ ΓD, (Dirichlet b. c.) (3)

(σ · n)(x) = ḡN ∀ x ∈ ΓN , (Neumann b. c.) (4)

where n is the outward unit normal vector on Γ, with Γ = Γ̄D ∪ Γ̄N and ΓD ∩ ΓN = ∅,
ḡD : Ω → Rnsd is the prescribed displacement vector on ΓD and ḡN : Ω → Rnsd is the
prescribed surface traction vector on ΓN . The isotropic fourth-order constitutive tensors,
so-called of stiffness tensor C and compliance tensor D = C−1, are given by

Dσ =
1

2µ

(
σ − λ

2µ+ nsdλ
tr(σ)I

)
and Cε(u) = λdiv(u)I + 2µε(u), (5)

where µ and λ are Lamé constants of the material, with µ > 0 and λ + 2µ
3 ≥ 0 owing to

thermodynamic considerations, and tr(σ) =
∑nsd

i=1 σii. The Lamé coefficients are related
to the Poisson’s ratio ν and the Young’s modulus E by

λ =
νE

(1 + ν) (1− 2ν)
and µ =

E

2(1 + ν)
. (6)

In the compressible and nearly incompressible cases we assume that C and D are positive-
definite tensors such that Cminφ

Tφ ≤ φTCφ ≤ Cmaxφ
Tφ, ∀φ ∈ Rnsd×nsd

sym and

Dminφ
Tφ ≤ φTDφ ≤ Dmaxφ

Tφ, ∀φ ∈ Rnsd×nsd
sym , where Cmin, Cmax, Dmin and Dmax

are constants such that 0 < Cmin < Cmax and 0 < Dmin < Dmax.
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3 Stabilized Hybrid Dual-Mixed Formulation for Elasticity

Let Ω be a bounded open polygonal domain in Rnsd with the boundary Γ. We denote
by {Th} a family of shape-regular partition of Ω such that Th = {K}Nee=1 is the union of
all Ne finite elements K of the domain Ω. The partition Th is indexed with the mesh
parameter h := maxK∈Th he, where he is the diameter of element K. Similarly, we define
Eh as the collection of all the faces (or edges) of the partition Th. Eh = {∂K} is the union
of all faces (or edges) of the elements K ∈ Th. E ih is the set of interior faces (or edges) and
E∂h = Eh ∩ ∂Ω is the set of boundary faces, such that Eh = E ih ∪ E∂h .

The broken space of vector-valued functions H1(Th) is defined on Th such that
H1(Th) = {v ∈ [L2(Ω)]nsd ; vi|K ∈ L2(K), ∇vi ∈ L2(K), ∀K ∈ Th, i = 1, .., nsd}, being
L2(K) the Lebesgue space in K. The broken space of second-order tensor-valued functions
H(div, Th) is given by H(div, Th) = {τ ∈ [L2(Ω)]n×n; div(τ )|K ∈ [L2(K)]nsd , ∀K ∈ Th}.
In addition, H

1/2
D (Eh) = {v̂ : Eh → Rnsd ;∃v ∈ [H 1

D(Ω)]nsd , v̂ = γhv} is the Lagrange
multiplier space, where H 1

D(Ω) = {v ∈ L2(Ω);∇v ∈ [L2(Ω)]nsd ; γv = 0 on ΓD} and γφ =
φ|Γ is the trace of the function φ ∈ H 1(Ω) on the boundary Γ; and γhφ = φ|Eh is the trace of
function φ ∈ H 1(Ω) on the structure of faces Eh. The inner product and associated norm to
the Lebesgue space on the partition Th are (u,v)Th =

∑
K∈Th(u,v)K =

∑
K∈Th

∫
K u ·v dK

and ‖v‖0,Th = {∑K∈Th ‖v‖20,K}1/2 = [
∑
K∈Th

∫
K u · v dK]1/2. The associated norms with

the spacesH
1/2
D (Eh) andH(div, Th) are ‖v̂‖1/2,Eh = infv∈[H 1

D]nsd (Ω){|v|1,Ω; γh v = v̂ on Eh}
and ‖τ‖div,Th = {∑K∈Th ‖τ‖2div,K}

1/2 = {∑K∈Th ∫K(τ : τ + divτ · divτ) dK}1/2, respec-

tively.
Given the elements K and K′, included in the partition Th, which share the face e ∈ E ih

such that e = ∂K∩∂K′, we defined the average {{·}} and jump operators [[·]] to vector-valued
functions v and tensor-valued functions τ defined on Th as following.

{{v}} =
v + v′

2
and {{τ}} =

τ + τ ′

2
on e ∈ E ih, (7)

[[v]] = v · n + v′ · n′ and [[τ ]] = τ n + τ ′ n′ on e ∈ E ih, (8)

and for boundary faces {{v}} = v and {{τ}} = τ on ∂K ∈ E∂h , and [[v]] = v ·n and [[τ ]] = τ n
on ∂K ∈ E∂h .

3.1 SHDM-Variational Formulation

In this section we develop a unconditionally stable hybrid-mixed formulation for the
elasticity problem. We begin defining a given regular partition Th of Ω and the product
space X of the composite elements ψ = {τ ,v, v̂} given by

X = H(div, Th)×H1(Th)×H1/2
D (Eh), (9)

together with the norm ||ψ||X defined by

||ψ||X =
(
‖τ‖2div,Th

+ ‖ε(v)‖20,Th + ‖h−1/2(v̂ − {{v}})‖21/2,Eh + ‖h−1/2[[v]]‖21/2,Eh
)1/2

.(10)
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Let f ∈ [L2(Ω)]nsd be the body force and ḡD = 0 on ΓD. For convenient choices of the
parameters δ1, δ2 and β the stabilized dual mixed-hybrid formulation is stated as follows:

SHDM Problem: Find {σ,u, û} ∈ X for all {τ ,v, v̂} ∈ X , such that∑
K∈Th

{
(Dσ, τ )K + (u,div τ )K − (û, τ · n)∂K + (divσ + f ,v)K +

δ1 (|D|(divσ + f), div τ )K + δ2 (σ − C∇Su,Dτ −∇Sv)K −
β (|C|(û− u), v)∂K

}
= 0 (11)∑

K∈Th

{
β (|C|(û− u), v̂)∂K − (σnK, v̂)∂K + (ḡN , v̂)∂K∩ΓN

}
= 0, (12)

where nK is the outward unit normal vector on ∂K.
The stabilization parameters δ1, δ2 and β can be, in general, dependent of the mesh

size h and are chosen to provide the best properties of stability and accuracy to the
formulation. The terms in δ1 appearing in formulation above activate the least-squares
residual of the equilibrium equation and the terms in δ2 do the same for the constitutive
equation. Both terms contribute to improve the stability of the stress and displacement
fields in the H(div, Th) and [H 1(Th)]nsd spaces, respectively. The terms in β enhance the
stability of the Lagrange multipliers. The two last terms in the equation 12 weakly enforce
the continuity of the traction vector on structure of faces Eh, including the boundary ΓN .
The boundary condition on ΓN is also imposed weakly. The parameters |D| and |C| are
introduced in equation to adjust adequately the dimensions of the additional terms.

4 SHDM-Finite Element Approximation

For the sake of simplicity we assume that the domain Ω ⊂ R2 is polygonal. Defining
the finite element spaces such that

Xh = Wh × Vh ×Mh, (13)

with

Wh = {τ h ∈H(div, Th); τij ∈ Dk(K), ∀K ∈ Th, i, j = 1...2}, (14)

Vh = {vh ∈H1(Th); vi ∈ Dl(K), ∀K ∈ Th, i = 1...2}, (15)

Mh = {v̂h ∈H1/2
D (Eh); v̂i ∈ Pm(e),∀e ∈ Eh, i = 1...2}, (16)

where Dk(K) = Pk(K), the space of polynomial functions of degree at most k in both
variables, or Dk(K) = Qk(K), the space of polynomial functions of degree at most k in
each variable, Pm(e) is the space of polynomial functions of degree at most m. Adding
and rearranging the terms of the equations 11 and 12, and considering the parameters
given by δ1 > 0, δ2 = −1

2 and β = −β0 · h−1, βo > 0, with |C| and |D| combined with βo
and δ1, respectively, we can rewrite the formulation as follows.
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SHDM-FEM: Let f ∈ [L2(Ω)]nsd be the body force and ḡD = 0 on ΓD. Find
{σh,uh, ûh} ∈ Xh such that

B({σh,uh, ûh}, {τ h,vh, v̂h}) = F ({τ h,vh, v̂h}) ∀ {τ h,vh, v̂h} ∈ Xh, (17)

with

B({σh,uh, ûh}, {τ h,vh, v̂h}) =
∑
K∈Th

{1

2
(Dσh, τ h)K + δ1 (divσh, div τ h)K −

1

2
(C∇Suh,∇Svh)K +

(uh,div τ h)K + (divσh,vh)K +
1

2
(σh,∇Svh)K +

1

2
(∇Suh, τ h)K − (18)

βo h
−1 ((ûh − uh), (v̂h − vh))∂K − (ûh, τ h · n)∂K − (σh · n, v̂h)∂K

}
,

F ({τ h,vh, v̂h}) =
∑
K∈Th

{
− (f ,vh)K − δ1 (f , div τ h)K − (ḡN , v̂h)∂K∩ΓN

}
. (19)

We observe that the approximation setting of the SHDM-formulation is non-conformal
method, given important properties similar to those of the discontinuous Galerkin method.
The following we are going to present some features of the SHDM-formulation.

4.1 Consistency

Let {σ,u} ∈ H(div,Ω) ×H1(Ω) be the solution of the problem S, û ∈ H1/2
D (Eh)

and {τ h,vh, v̂h} ∈ Xh. Replacing the solution {σ,u} in the equation 18, integrating
by parts the term (u, div τ h)K, considering that the Lagrange multiplier is given by
û = {{γhu}} + 1

2β [[γhσ]] on Eh and noting that the traction vector σn and the dis-
placement u are continuous on structure of faces Eh we obtain

B({σ,u, û}, {τ h,vh, v̂h}) = F ({τ h,vh, v̂h}) ∀{τ h,vh, v̂h} ∈ X , (20)

what we conclude that the solution of the problem S is also solution of the SDMH-
Formulation given by equation 17.

4.2 Local Conservation

Let K an element belonging to the interior of the domain partition Th and choosing at
the equation 17 the weighting functions vh = 1, v̂h = 0 and τ h = 0 in the element K and
{τ h,vh, v̂h} = {0,0,0} elsewhere we obtain∫

K
(div(σh) + f) dK − β(h)

∫
∂K

(ûh − uh) ds = 0. (21)

Exact local conservation (equilibrium) exists when the stability parameter β is null. We
can show that under certain conditions the SHDM-formulation is also stable when β = 0
and therefore locally conservative.
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4.3 Stability

Choosing ψh = {τ̄ h, v̄h, ¯̂vh} = {σh,−uh,−ûh} we prove

sup
ψh∈Xh

B(ξh,ψh)

‖ψh‖Xh

≥ B({σ,u, û}, {τ̄ h, v̄h, ¯̂vh})
‖{τ̄ h, v̄h, ¯̂vh}‖X

≥ α‖{σ,u, û}‖X ,

with the stability constant α = min{Dmin
2 , δ1, Cmin,

βo
2 }.

5 Numerical Experiments

Computationally, we adopt the following strategy. First we solve the local problems 11
to obtain {σh,uh} in terms of ûh and to assemble the global equation 12 with Lagrange
multipliers only. After solving the global system in û, the local problems are revisited
to compute {σh,uh} element-by-element. A serial implementation was used. In our
numerical experiments we observed that the local problems have a marginal computational
cost compared to the cost of the global system.

The selected problem is the plane state of stress defined in the domain Ω = (0, 1)×(0, 1)
with prescribed displacement on all boundary ∂Ω, gD = 0. The material properties
are Young’s modulus E = 1 and Poisson’s ratio ν = 0, 3. Choosing appropriately the
body force f(x,y) so that the exact solution u = {ux, uy} of the problem is given by
ux(x, y) = 10(y − y2) sin(πx)(1− x)(1− y

2 ) and uy(x, y) = 0.
In this study we compare the SHDM-Finite Element Approximation with the Inter-

polant Approximation and consider the parameters δ1 = 1
2 , δ2 = −1

2 and two cases for
stabilization parameter, βo = 1 and βo = 0. The study of h-convergence is presented
for same polynomial order for all fields, k = l = m = 3. We use a sequence of mesh
4× 4, 8× 8, 16× 16, and 32× 32 with quadrilateral elements.
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Figure 1: h-Convergence of Stabilized Hybrid Dual-Mixed Approximation compared with the

Interpolant Approximation to polynomial order k=l=m=3 and different value for stabilization

parameter βo.

The numerical evidences given by Figure 1 show optimal rate of convergence to both ap-
proximate solutions and its gradients when the stabilization parameter βo = 1
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(e.g. k = l = m = 3). However, when βo = 0 (local conservation condition) the for-
mulation is stable but the stress approximation converge between optimal and suboptimal
rate and the displacement approximation continues with optimal convergence rate.

6 Concluding Remarks

We propose a Stabilized Hybrid Dual-Mixed Finite Element Approximation for the
linear elasticity problem. The global problem is assembled in the Lagrange multiplier only
and then local problems are used to recover displacement and stress approximations in the
interior of the element. Numerical evidences indicate that the approximate fields converge
with optimal rate for βo = 1 while for βo = 0 the stress approximation converge with
nearly optimal convergence rates. Many others important features of this formulation will
be presented in future works.
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