Trabalho apresentado no CNMAC, Gramado - RS, 2016.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Simulação de escoamento de água em canal entre placas paralelas utilizando o método do reticulado de Boltzmann

Vanderlei Galina¹ PPGMNE, Programação Matemática, UFPR, Curitiba, PR Jocelaine Cargnelutti² PPGMNE, Programação Matemática, UFPR, Curitiba, PR Eloy Kaviski³ Departamento de Hidráulica e Saneamento, UFPR, Curitiba, PR Liliana Madalena Gramani⁴ Departamento de Matemática, UFPR, Curitiba, PR Adilandri Mércio Lobeiro⁵ Departamento Acadêmico de Matemática, UTFPR, Campo Mourão, PR

Resumo. O método do reticulado de Boltzmann (LBM) possui equação governante caracterizada pelas etapas de transmissão e colisão, e pode ser visto como uma forma discretizada da equação cinética de Boltzmann em que somente são mantidos os detalhes moleculares essenciais para recuperar o comportamento macroscópico. O método é eficiente na simulação de escoamento de fluidos, mostrando-se competitivo nas aplicações de mecânica dos fluidos computacional, sendo especialmente útil em aplicações com geometrias complexas. O objetivo deste trabalho é utilizar o LBM para simular o escoamento de água em um canal entre placas paralelas. Para isto, foram usadas condições de contorno *bounce back* e Zou-He. Fez-se a comparação entre as soluções numérica e analítica, para a validação do método.

Palavras-chave. Método do Reticulado de Boltzmann, Métodos Numéricos, Simulação Numérica, Escoamento de água.

1 Introdução

Com uma abordagem diferente quando comparado aos métodos numéricos tradicionais, o LBM não utiliza discretizações nas equações macroscópicas governantes do escoamento. A ideia principal do LBM é fazer a ponte entre a microescala e a macroescala por não considerar o comportamento individual das partículas, mas o comportamento de um conjunto de partículas. O método é originário historicamente do autômato celular de gás em rede (LGCA), sendo este uma classe particular dos autômatos celulares (CA) [15].

¹vanderleigalina@gmail.com

²jocelainecargnelutti@gmail.com

³eloy.dhs@gmail.com

⁴l.gramani@gmail.com

⁵adilandri@gmail.com

 $\mathbf{2}$

Mudanças foram propostas para melhorar o LBM desde sua introdução na década de 1980. O método passou por refinamentos e extensões e tornou-se promissor na simulação de escoamentos de fluidos. Por exemplo, o LBM obteve êxito na modelagem de escoamento de água com distribuição não-hidrostática de pressão [14], fluxo sanguíneo [6], escoamento de águas rasas com ou sem turbulência [15], escoamentos multifásicos em meios porosos [2,12], escoamento de fluidos com transferência de calor no interior de microcanais [13] e aplicações nas indústrias aeroespacial e automotiva [4, 11].

O LBM pode gerar soluções numéricas precisas, por meio de cálculos aritméticos simples, para problemas que envolvem equações diferenciais e geometrias complexas. O algoritmo é de simples implementação e é possível otimizar o código por meio do uso da computação paralela. Por outro lado, deve-se conhecer bem o problema e incorporar adequadamente as características físicas para que a simulação retorne resultados precisos [15].

Pode-se identificar no LBM três elementos principais: o reticulado, a função distribuição de equilíbrio e o operador de colisão. O reticulado descreve as possíveis direções de movimento das distribuições de uma partícula. A função distribuição de equilíbrio deve ser escolhida de forma que seja possível a recuperação das equações de Navier Stokes através de uma expansão assintótica multiescala de Chapman-Enskog na equação do reticulado de Boltzmann (LBE) e assumindo que o número de Mach (Ma) é suficientemente pequeno. O operador de colisão introduzido por Bhatnagar, Gross e Krook (BGK) descreve a colisão como um processo de relaxamento para o estado de equilíbrio local [7].

Ressalta-se a importância de questões relacionadas com a instabilidade numérica. Por exemplo, as aplicações envolvendo escoamentos reais de água possuem números de Reynolds muito altos e as simulações são realizadas com o parâmetro de relaxamento muito próximo do limite inferior, $\tau = 1/2$ [10]. Escoamentos com altos números de Reynolds exigem refinamento da malha e, consequentemente, alto custo computacional. Nestes casos, avalia-se a possibilidade de otimizar o tempo de processamento utilizando computação paralela ou utilizar outro método numérico que, dependo do problema, pode ser mais adequado [15]. O LBM requer o cuidado de estimar e ajustar os parâmetros de simulação, possibilitando otimização do custo computacional e precisão dos resultados [6].

Utilizou-se um único tempo de relaxamento neste trabalho. Porém, modelos de colisão diferentes do BGK, com múltiplos tempos de relaxamento, podem ser observados no trabalho de Philippi et al. [9].

Este trabalho faz parte de um estudo maior, cuja intenção é simular escoamentos em canais naturais. O interesse em utilizar o LBM se ratifica, principalmente, pelo fato de ser uma alternativa potencial para simular escoamento de água sem utilizar discretizações nas equações governantes. Com código de simples implementação e a possibilidade de utilizar computação paralela, o LBM mostra-se um método promissor na dinâmica de fluidos computacional, respeitadas as restrições já mencionadas.

2 Método do Reticulado de Boltzmann

De acordo com Chen e Doolen [3], a ideia principal do LBM é elaborar modelos cinéticos simplificados que incorporem a física essencial de processos microscópicos ou mesoscópicos,

de forma que as características na escala macroscópica sejam fiéis às equações, não sendo necessário fazer a discretização das equações que governam a dinâmica do fluido. As principais etapas no LBM são os processos de transmissão e colisão, e estes são realizados por meio da equação (1), que é a LBE com aproximação BGK:

$$f_i(\vec{x} + \vec{e_i}\Delta x, \ t + \Delta t) - f_i(\vec{x}, \ t) = \frac{1}{\tau} \left[f_i^{eq}(\vec{x}, \ t) - f_i(\vec{x}, \ t) \right], \ i = 1, ..., l,$$
(1)

onde f_i é a função distribuição de partículas, f_i^{eq} é a função distribuição de equilíbrio, τ é o parâmetro de relaxamento, Δx é o espaçamento da malha, Δt é o incremento no tempo, $\vec{e_i}$ são as possíveis direções de movimento de uma partícula na malha e l é o número de direções do reticulado escolhido.

A função distribuição de partículas f_i apresenta a probabilidade de uma partícula se deslocar de um nó para outro, em um determinado instante de tempo. A função distribuição de equilíbrio f_i^{eq} é construída de forma que o operador de colisão em (1) tenda para zero. Adotando o reticulado D2Q9 [15], a função distribuição de equilíbrio é dada neste artigo pela expressão (2), que, por sua vez, depende da densidade e da velocidade macroscópicas:

$$f^{eq} = w_i \rho \left[1 + \frac{3\left(\vec{c} \cdot \vec{u}\right)}{c^2} + \frac{9}{2} \frac{\left(\vec{c} \cdot \vec{u}\right)^2}{c^4} - \frac{3}{2} \frac{\left(\vec{u} \cdot \vec{u}\right)}{c^2} \right],\tag{2}$$

onde ρ é o valor macroscópico da massa específica, $\vec{c}(\vec{x},t) = c\vec{e_i}(\vec{x},t)$ é o vetor velocidade das micropartículas, $c = \frac{\Delta x}{\Delta t}$ é a intensidade do vetor, $\vec{u}(\vec{x},t)$ é a velocidade hidrodinâmica e o termo w_i são pesos associados a cada uma das direções do modelo. No caso do modelo D2Q9, os valores de w_i são [1]:

$$w_i = \begin{cases} 4/9 & \text{se } i = 0\\ 1/9 & \text{se } i = 1, 2, 3, 4, \\ 1/36 & \text{se } i = 5, 6, 7, 8 \end{cases}$$
(3)

onde i = 0 é o centro do reticulado, i = 1, 2, 3, 4 são as direções cardeais e i = 5, 6, 7, 8 são as direções colaterais.

A viscosidade cinemática é uma propriedade do fluido e está relacionada com o parâmetro de relaxamento τ por meio da expressão (4) [15]:

$$\frac{\Delta t}{\Delta x^2} = \frac{2\tau - 1}{6\nu}, \qquad \tau > 1/2.$$
(4)

A equação (4) é uma condição para que o método do reticulado de Boltzmann possa representar um escoamento incompressível modelado pelas equações de Navier-Stokes.

A densidade e a velocidade macroscópicas (5) podem ser recuperadas por meio de um somatório que envolve a função distribuição de partículas f_i [3]:

$$\rho(\vec{x},t) = \sum_{i} f_i(\vec{x},t), \qquad \rho \vec{u}(\vec{x},t) = \sum_{i} f_i(\vec{x},t) c \vec{e_i}.$$
 (5)

3 Condições de Contorno

A representação adequada das características físicas do problema por meio das condições de contorno é um fator crucial para a estabilidade e precisão das simulações. Optou-se, neste artigo, por usar duas condições de contorno: *Bounce Back* nas placas superior e inferior, e Zou-He na entrada e saída do canal.

3.1 Condição de Contorno Bounce Back

A condição de contorno *bounce back* pode ser imposta sobre partículas que entram em contato com paredes ou obstáculos sólidos e tem o objetivo de simular o atrito viscoso entre o sólido e o fluido. Quando aplicada, esta condição de contorno inverte o sentido do movimento da partícula e mantém a direção. Esta condição de contorno é bastante usada e garante não-escorregamento, ou seja, a velocidade do fluido é nula nas paredes e obstáculos sólidos [3].

3.2 Condição de Contorno Zou-He

A abordagem feita por Zou e He [16] impõe condições de contorno de velocidade exatamente nos centros das células que estão no contorno. A ideia destes modelos é manter as etapas de propagação e colisão normais para todas as células, porém introduzindo um cálculo adicional antes da etapa de colisão, para calcular a quantidade de partículas f_i 's que se deslocam em algumas direções das células de fronteira. Após a etapa de propagação, as f_i 's que têm origem na fronteira são conhecidas nas células de fronteira (ver Figura 1).

Figura 1: Condição de contorno de Zou-He na parede esquerda com f_1 , f_5 e f_8 desconhecidas.

Este tipo de condição de contorno é interessante porque preserva a massa, possui acurácia de segunda ordem e também é apropriada para contornos retilíneos. Para estabelecer as f_i 's desconhecidas, conforme Figura 1, usa-se *bounce back* de não equilíbrio na direção perpendicular à parede esquerda. Além disso, usa-se as expressões em (5) e obtém-se:

$$f_1 = f_3 + \frac{2\rho u_x}{3}, \ f_5 = f_7 - \frac{f_2 - f_4}{2} + \frac{\rho u_y}{2} + \frac{\rho u_x}{6} \ e \ f_8 = f_6 + \frac{f_2 - f_4}{2} - \frac{\rho u_y}{2} + \frac{\rho u_x}{6}. \ (6)$$

4 Estudo de Caso

O escoamento de um fluido incompressível com perfil parabólico em regime estacionário ao longo de um tubo ou canal entre placas fixas, com paredes impermeáveis e

não-escorregadias devido à diferença de pressão entre os extremos do canal, é um escoamento de Poiseuille [5].

As equações governantes deste problema são as equações de Navier-Stokes com simplificações, como, por exemplo, com pressão hidrostática. O fluido é Newtoniano e incompressível. Depois de algumas simplificações, tem-se a seguinte equação diferencial:

$$\frac{d^2u}{dy^2} = \frac{1}{\mu}\frac{dp}{dx}.$$
(7)

As soluções para as velocidades nas direções $x \in y$ são, respectivamente [5]:

$$u_x(x,y) = -\frac{1}{2\mu} \frac{\partial p}{\partial x} \left(L_y y - y^2 \right), \quad u_y(x,y) = 0, \tag{8}$$

onde p é a pressão, $\partial p/\partial x$ é a variação da pressão, μ é a viscosidade dinâmica que é dada por $\mu = \rho \nu$, com densidade ρ e viscosidade cinemática ν , u_x é a componente horizontal da velocidade, u_y é a componente vertical da velocidade e L_y é a largura do canal.

A velocidade máxima do escoamento de Poiseuille ocorre em $y = L_y/2$ e a velocidade nula ocorre nas paredes direita e esquerda, construindo um perfil parabólico de velocidade.

5 Resultados e Discussões

Os parâmetros reais do problema são: o comprimento do canal é $L_x = 1 m$, a largura é $L_y = 0, 1 m$, a densidade da água é $\rho = 1000 kg/m^3$, a viscosidade cinemática da água é $\nu = 1 \times 10^{-6} m^2/s$ e a velocidade do escoamento é $u_{max} = 0,002 m/s$. O número de Reynolds associado é $R_e = 200$.

De acordo com Mohamad [8], uma maneira de realizar a simulação no LBM é transformar os parâmetros físicos em parâmetros adimensionais na malha, em termos de reticulado. Inicialmente, optou-se por um domínio computacional que é representado por uma malha retangular de 400 × 40 reticulados nas direções x e y, respectivamente, e velocidade no reticulado de 0, 1 m/s. A escolha deve ser feita respeitando-se o número de Reynolds do problema. Com essas configurações, obtêm-se o parâmetro de relaxamento $\tau = 0, 56$, o passo espacial $\Delta x = \Delta y = 0,0025 m$ e o passo temporal $\Delta t = 0,125 s$.

Na Figura 2, pode-se observar a solução numérica do escoamento de Poiseuille em unidades do reticulado. Pode-se analisar também na Figura 3 a solução numérica do escoamento para os dados físicos. Na Figura 4(a) tem-se a comparação da solução numérica e analítica no meio do canal ($x = L_x/2$), com erro máximo relativo de 0,38%. O número de iterações foi de 20000, gerando um tempo de 2500 segundos. Este número de iterações é justificado pela Figura 4(b), na qual se observa a convergência da velocidade para $u_{max} =$ 0,002 m/s no ponto ($L_x/2, L_y/2$), com o aumento do número de iterações. Utilizou-se o compilador Gfortran em um computador com processador 2.2 GHz e 16 GB de memória RAM. O tempo de processamento foi de 74 segundos.

Figura 2: Solução numérica do escoamento com dados na malha.

Figura 3: Solução numérica do escoamento com dados físicos.

Figura 4: Solução analítica e numérica para o escoamento Poiseuille.

6 Conclusão

A aplicação do LBM mostrou-se eficaz na simulação do escoamento de água em canal pela concordância obtida com a solução analítica do escoamento de Poiseuille. Apesar do escoamento de Poiseuille ser simples, tem-se a dificuldade de simular o escoamento de água, pois a viscosidade cinemática da água é muito baixa e acarreta dificuldade na calibração dos parâmetros. Observou-se que o erro máximo relativo de 0,38% ocorreu em alguns pontos próximos das paredes do canal. Com isto, entende-se que é importante fazer uma melhor abordagem da condição de contorno nas paredes.

Referências

 T. Abe. Derivation of the Lattice Boltzmann Method by means of the discrete ordinate method for the Boltzmann Equation, *Journal of Computational Physics*, 131:241–246, 1997.

- [2] R. Benzi, S. Succi, and M. Vergassola. The Lattice Boltzmann Equation: theory and applications, *Physics Reports*, 222(3):145–197, 1992.
- [3] S. Chen and G. D. Doolen. Lattice Boltzmann Method for fluid flows, Annual Review of Fluid Mechanics, 30(1):329–364, 1998.
- [4] F. R. do Amaral. Estudo do efeito aeroacústico de um selo localizado na cova do eslate, Dissertação de Mestrado, USP, 2015.
- [5] R. W. Fox and A. T. McDonald. Introduction to Fluid Mechanics. John Wiley e Sons, United States of America, 1998.
- [6] D. R. Golbert. Método de Lattice Boltzmann em Hemodinâmica Computacional: interações fluido-estrutura e modelos acoplados 1D-3D. Tese de Doutorado, LNCC, 2013.
- [7] X. He and L. S. Luo. A priori derivation of the lattice Boltzmann equation, *Physical Review E*, 55(6):6333–6336, 1997.
- [8] A. A. Mohamad. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. Springer, London, 2011.
- [9] P. C. Philippi, L. A. Hegele Jr, R. Surmas, D. N. Siebert, and L. O. E. Santos. From the Boltzmann to the lattice-Boltzmann equation: beyond BGK collision models, *International Journal of Modern Physics C*, 18:556–565, 2007.
- [10] J. Sterling and S. Chen. Stability Analysis of Lattice Boltzmann Methods, Journal of Computational Physics, 123(1):196–206, 1996.
- [11] S. Succi. The Lattice Boltzmann Equation for Dynamics and Beyond. Oxford University Press Inc., New York, 2001.
- [12] R. Surmas. Simulação de fenômenos termo-fluidodinâmicos pelo emprego do método de diferenças finitas à solução da equação de Boltzmann. Tese de Doutorado, UFSC, 2010.
- [13] R. Zarita and M. Hachemi. Microchannel Fluid Flow and Heat Transfer By Lattice Boltzmann Method. In 4th Micro and Nano Flows Conference, Londres, Inglaterra, 2014.
- [14] Z. Zhao, P. Huang, Y. Li, and J. Li. A lattice Boltzmann method for viscous free surface waves in two dimensions, *International Journal for Numerical Methods in Fluids*, 71:223–248, 2013.
- [15] J. G. Zhou. Lattice Boltzmann Method for Shallow Water Flows. Springer, New York, 2004.
- [16] Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. *Physics of Fluids*, 9(6):1591–1598, 1997.