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Abstract. We discuss a procedure for numerically solving nonlinear hyperbolic conserva-
tion law problems by means of a Lagrangian-Eulerian framework. The underlying hyperbolic
conservation law is written in a space-time divergence form, so that inherent conservation
properties of the problem are reflected in the numerical scheme. In order to enhance reso-
lution and accuracy of the approximations, we make use of polynomial reconstruction ideas
into the Lagrangian-Eulerian novel approach. Finally, numerical results are given to verify
the formal construction as well as to demonstrate its accuracy, efficiency, and versatility.
These results for the considered sample problems compare very well to analytical results.
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1 Introduction

In this work we present a numerical scheme for solving hyperbolic conservation laws
by means of a Lagrangian-Eulerian approach. This framework has been used for numeri-
cally solving partial differential equations of several types, such as hyperbolic conservation
laws [8,11], balance laws problems [3,6] and parabolic equations [4]. In the work [4], it was
identified the region in the space-time domain where the mass conservation takes place,
but linked to a scalar convection-dominated nonlinear parabolic problem, which models
the immiscible incompressible two-phase flow in a porous medium [1]. Some similar de-
velopments based on Lagrangian-Eulerian framework, with focus on increasing order and
accuracy of such schemes can be found in [6]. More recently in [2,11], such ideas were ex-
tended to a wide range of nonlinear purely hyperbolic conservation laws and balance laws
– scalar and systems. Our goal on the current work is to present the formal construction
of an accurate Lagrangian-Eulerian scheme for hyperbolic conservation laws. Preliminary
results showed qualitatively correct solutions with accurate resolution.
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2 Numerical Method

Consider the following hyperbolic conservation law for u = u(x, t)

∂u

∂t
+

∂H(u)

∂x
= 0, x ∈ R, t > 0 u(x, 0) = η(x), x ∈ R. (1)

We provide a formal development of the analogue Lagrangian-Eulerian scheme [2–4, 11]
for numerically solving the initial value problem with x ∈ R, t > 0. As in the Lagrangian-
Eulerian schemes [3,4], local conservation is obtained by integrating the conservation law
over the region in the space-time domain where the conservation of the mass flux takes
place. Consider the Lagrangian-Eulerian finite-volume cell centers

Dn
j = {(t, x) / tn ≤ t ≤ tn+1, σj− 1

2

(t) ≤ x ≤ σj+ 1

2

(t)}, (2)

where σn
j− 1

2

(t) is the parameterized integral curve such that σn
j− 1

2

(tn) = xn
j− 1

2

. These curves

are the lateral boundaries of the domain Dn
j in (2) and we define x̄n+1

j− 1

2

:= σn
j− 1

2

(tn+1) and

x̄n+1
j+ 1

2

:= σn
j+ 1

2

(tn+1) as their endpoints in time tn+1. The numerical scheme is expected

to satisfy some type of mass conservation (due to the inherent nature of the conservation

law) from time tn in the space domain
[

xn
j− 1

2

, xn
j+ 1

2

]

to time tn+1 in the space domain
[

x̄n+1
j− 1

2

, x̄n+1
j+ 1

2

]

. With this, we must have the flux through curves σn
j− 1

2

(t) to be zero. From

the integration of (1) and the divergence theorem, using the fact that the line integrals
over curves σn

j (t) vanish, we get

∫ x̄n+1

j+1
2

x̄n+1

j− 1
2

u(x, tn+1)dx =

∫ xn

j+1
2

xn

j− 1
2

u(x, tn)dx. (3)

The linear case from [3] is essentially imitated, but here the curves σn
j−1/2(t) are not straight

lines in general, but rather solutions of the set of local nonlinear differential equations

[3, 11]:
dσn

j−1/2
(t)

dt = H(u)
u , for tn < t ≤ tn+1, with the initial condition σn

j−1/2(t
n) = xnj−1/2,

assuming u 6= 0 (for the sake of presentation).
The extension of this construction follows naturally from the finite volume formulation

of the linear Lagrangian-Eulerian scheme as building block to construct local approxima-

tions such as fn
j−1/2 =

H(Un
j−1/2

)

Un
j−1/2

≈ H(u)
u with the initial condition σn

j−1/2(t
n) = xnj−1/2.

Indeed, distinct and high-order approximations are also acceptable for
dσn

j−1/2
(t)

dt and can
be viewed as ingredients to improve accuracy of the new family of Lagrangian-Eulerian
methods; this will be addressed later. Equation 3 defines conservation of mass but in a
different mesh cell-centered in points x̄n

j+ 1

2

. We will later address how to project these vol-

umes back to the original mesh. The piecewise constant numerical data is reconstructed
into a piecewise linear approximation (but high-order reconstructions are acceptable),
through the use of MUSCL-type interpolants:

Lj(x, t) = uj(t) + (x− xj)
1

∆x
u′j. (4)
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For the numerical derivative 1
∆xu

′
j , there are several choices of slope limiters; in book [8]

there is a good compilation of many options; a priori choice of such slope limiters is quite
hard, but they are chosen upon the underlying model problem under investigation. One
possible for the slope limiter is

U ′

j = MM

{

α∆uj+ 1

2

,
1

2
(uj+1 − uj−1), α∆uj− 1

2

}

, (5)

and this choice for slope limiter allows steeper slopes near discontinuities and retain accu-
racy in smooth regions. The range of the parameter α is typically guided by the CFL con-
dition [9]. Here, MM stands for the usual MinMod limiter [8,9], with ∆uj+ 1

2

= uj+1−uj,

MM{σ, τ} =
1

2
[sgn(σ) + sgn(τ)]min {|σ|, |τ |} . (6)

The discrete version of equation (3), using the piecewise linear approximation above, is

U
n+1
j =

1

hn+1
j

∫ x̄n+1

j+1
2

x̄n+1

j− 1
2

u(x, tn+1)dx =
1

hn+1
j

∫ xn

j+1
2

xn

j− 1
2

u(x, tn)dx =
h

hn+1
j

Un
j , (7)

in which we use the approximations

U
n+1
j :=

1

hn+1
j

∫ x̄n+1

j+1
2

x̄n+1

j− 1
2

u(x, tn+1)dx, and Un
j :=

1

h

∫ xn

j+1
2

xn

j− 1
2

u(x, tn)dx.

Solutions σn
j−1/2(t) of the differential system are obtained using the approximations

Uj− 1

2

=
1

h

∫ xn
j

xn
j−1

L(x, t)dx =
1

h





∫ xn

j− 1
2

xn
j−1

Lj−1(x, t)dx +

∫ xn
j

xn

j− 1
2

Lj(x, t)dx





=
1

2
(Uj−1 + Uj) +

1

8
(U ′

j − U ′

j−1).

(8)

The above approximation is not necessary in the linear case where H(u) = a(x, t)u. We
must notice that the approximation of fn

j−1/2 may cause spurious oscillation in Riemann

problems, specially in shocks and discontinuity regions (see Figure 2 in Section 3). For
that, we use a polynomial reconstruction of second degree to smooth out the approxi-
mation. The numerical solutions have shown qualitatively correct behavior for nonlinear
hyperbolic conservation laws. The convergence order remains unchanged even with the re-
construction, being a first-order approximation. In the reconstruction we use the nonlinear
Lagrange polynomial in Uj−1, Uj and Uj+1. So, equation (7) reads

U
n+1
j =

1

hn+1
j

∫ xn

j+1
2

xn

j− 1
2

P2(x)dx, (9)
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where P2(x) = Un
j−1 L−1(x− xj) + Un

j L0(x− xj) + Un
j+1L1(x− xj) and

L± 1(x) =
1

2

[

(

x

h
±

1

2

)2

−
1

4

]

, L0(x) = 1−
(x

h

)2
. (10)

Next, we obtain the resulting projection formula as follows

Un+1
j =

1

h

(

ClU
n
j−1 + (h− Cl − Cr)U

n
j + CrU

n
j+1

)

, (11)

where the projection coefficients are: Cl = 1
2 f

n
j−1/2∆tn(1 + sign(fn

j−1/2)) and Cr =
1
2 |f

n
j+1/2|∆tn(1− sign(fn

j+1/2)). Here ∆tn is obtained under CFL-condition

max
j

{

|fj− 1

2

∆tn|
}

≤
h

2
,

which is taken by construction of method. We note that in the linear case, when a(x, t) =
a > 0 (or a < 0), the numerical scheme (7)-(11) is a generalization of the Upwind scheme,
but our scheme can approximate solution in both cases a > 0 and a < 0, the CFL-condition
in this case is |a∆t| ≤ h as in the Upwind scheme.

3 Numerical Experiments

We present and discuss computations for scalar linear and nonlinear conservation laws
with convex and non-convex flux functions. In Figure 1, it is shown numerical solutions for
ut + (a(x, t)u)x = 0 along with various a(x, t) functions. For instance on the left picture
we take a standard test case, called Shu’s linear test [6,7] with a(x, t) = 0.5 and 256 cells.
On the center picture we show a test of our scheme on the case with a(x, t) = sin(x) over
[0, 2π], 128 cells and with the exact solution (see [6])

u(x, t) =
sin(2 arctan(e−t tan(x/2)))

sin(x)
.

And on the right picture of Figure 1 as in [6], we test a case with a(x, t) = sin(t) on
[0, 2] and 256 cells, for which the exact solution is u(x, t) = u0(x + 1 + cos(t)) where
u0(x) = 0.75 + 0.25 sin(π x) over [0, 2] simulated at time t = 4. Second and third cases
present different velocity signals in space (center case) and over time (right case), and
our method shows robustness by not needing any special treatment for that. In Figure
2, we present the solutions of the problem with Burgers’ flux function ut + (u2/2)x = 0
along with discontinuous initial data u(x, 0) = 1, x < 0 and u(x, 0) = 0, x > 0 (left
picture), and u(x, 0) = −1, x < 0 and u(x, 0) = 1, x > 0 (right picture), without the
reconstruction. The shock discontinuity on the left exhibits spurious oscillations. The
right picture is a transonic rarefaction wave. In Figure 3, it is shown again the numerical
solutions for ut + (u2/2)x = 0 along with same discontinuous initial data u(x, 0) = 1,
x < 0 and u(x, 0) = 0, x > 0 (left picture), and u(x, 0) = −1, x < 0 and u(x, 0) = 1,
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x > 0 (middle picture), now with polynomial reconstruction. On these frames are shown
snapshot graphs with waves moving from left to right. We get a very nice looking numerical
approximate solution with scheme (9)-(11), which in turn seems to be propagating at
entirely entropy-correct Rankine-Hugoniot speed and similar good results are shown to
the rarefaction case as well. Here, as the rarefaction wave is crossed, there is a sign change
in the characteristic speed u and thus there is one point at which u = 0, the sonic point.
However, our numerical scheme now shows no spurious anomalies around u = 0. The
classical nonlinear one-dimensional Buckley-Leverett case is depicted on the right picture
in Figure 3 at time t = 1. These test cases here were simulated with 256 cells. Another
example with the Buckley-Leverett flux function is seen on Figure 4, where we set a square
wave as initial condition, u(x, 0) = 1,−1 < x < 1 and u(x, 0) = 0, otherwise (left picture).
The solution profile starts as a rarefaction wave followed by a shock on the left side and
a rarefaction wave followed by a shock on the right side for small times (middle picture).
When the left shock meets the right rarefaction (see middle and right pictures in Figure
4), we observe the expected decaying pattern [10]; see also [5], Section 3.
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Figure 1: Left: Shu’s linear test. Middle: Test case with a(x, t) = sin(x), the velocity is
variable in space. Right: Test case with a(x, t) = sin(t), the velocity is variable in time.
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Figure 2: Nonlinear tests for Burgers’ flux function without reconstruction. Left: shock
wave, initial condition u(x, 0) = 1, x < 0 and u(x, 0) = 0, x > 0, end time t = 0.5. Right:
rarefaction wave, u(x, 0) = −1, x < 0 and u(x, 0) = 1, x > 0, end time t = 1.0.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0329 010329-5 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0329


6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

position

u

EXACT

SCHEME

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

position

u

EXACT

SCHEME

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

position

u

EXACT

SCHEME

Figure 3: Nonlinear tests with reconstruction. Left: Burgers’ flux function, shock wave
solution with initial condition u(x, 0) = 1, x < 0 and u(x, 0) = 0, x > 0, end time t = 0.5.
Middle: Burgers’ flux function, rarefaction wave with initial condition u(x, 0) = −1, x < 0
and u(x, 0) = 1, x > 0, end time t = 1.0. Left: Buckley-Leverett flux function (H(u) =
u2/(u2 + 0.5(1 − u)2)) with initial condition u(x, 0) = 1, x < 0 and u(x, 0) = 0, x > 0.
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Figure 4: Buckley-Leverett flux function with initial condition u(x, 0) = 1,−1 < x < 1
and u(x, 0) = 0, otherwise. Snapshots at t = 0, t = 0.4 and t = 1, respectively.

4 Concluding Remarks

We presented the development of an effective numerical scheme for solving nonlinear
scalar hyperbolic conservation laws problems with the Lagrangian-Eulerian framework.
This method is based on a reformulation of the conservation laws in terms of an equiva-
lent locally conservative space-time problem in divergence form. We make use of piecewise
linear and parabolic reconstructions ideas for resolution and accuracy reasons and the re-
sulting method present qualitatively correct numerical approximations. Our method is
robust in a way that no special treatment is needed when the sign of velocity changes over
time. We expect to establish a componentwise extension of the scheme in order to perform
numerical experiments for systems of conservation and balance laws, as well as multidi-
mensional problems. Our numerical experiments show good evidence of computational
convergence.
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