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Abstract This work is concerned with the numerical simulation of the Kelvin-Helmholtz
instability using a two-dimensional ideal magnetohydrodynamics model in the context of
adaptive multiresolution approach. The Kelvin-Helmholtz instabilities are caused by a ve-
locity shear and normally expected in a layer between two fluids with different velocities.
Due to its complexity, this kind of problem is a well-known test for numerical schemes and it
is important for the verification of the developed code. The aim of this paper is to compare
our solution with the solution of the well known astrophysics FLASH code to verify our code
in respect to this reference.
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1 Introduction

The magnetohydrodynamics (MHD) theory describes the dynamics of a conducting
fluid in presence of magnetic fields and constitutes an important tool to study the macro-
scopic behavior of plasmas. In this context, the Kelvin-Helmholtz instability, which is
commonly expected in boundary layers separating two fluids, is an important and a com-
plex physical problem that can be studied with the MHD models, and should often occur
in both astrophysical and space geophysical environments [4]. On the discretization of
the MHD system, we use a finite volume method combined with an adaptive multireso-
lution (MR) approach to create a computational mesh refined where local structures are
presented. The MR for cell-averages was firstly introduced by Ami Harten [8] and its idea
is to represent a set of data in different levels of resolution by using a wavelet transform.
The MR algorithm is implemented for compressible Navier-Stokes and 5 more system of
equations in the C++ code named CARMEN [12]. The ideal MHD equations were added
later to the CARMEN code [2, 6, 7], and it is employed herein.
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We use the well-known in astrophysics and space geophysics FLASH code [5], developed
by the Flash Center in University of Chicago, to create a reference MHD solution to our
results. The goal of this work is to verify the numerical results of CARMEN code for
the Kelvin-Helmholtz instability problem by comparing them with the reference solution,
which is obtaines in a regular cartesian mesh.

The content is organized as follows. In Section 2, we briefly present the MHD model and
the MR approach we use to simulate the Kelvin-Helmholtz instabilities. In Section 3, the
numerical results and discussion are shown. The final remarks are presented in Section 4.

2 Methodology

In this section, we introduce the MHD equations and the multiresolution approach used
in the numerical experiments. The ideal MHD model is given by

∂ρ

∂t
+∇ · (ρu) = 0, (1a)
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∂B
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]
= 0, (1d)

where ρ represents density, p the pressure, u = (ux, uy, uz) the velocity vector,
B = (Bx, By, Bz) the magnetic field vector, I the identity tensor of order 2, and
γ the ratio of specific heats (γ > 1). The pressure is given by the constitutive law
p = (γ − 1)

(
e− ρu·u

2 −
B·B

2

)
, where e is the energy density. The ideal MHD equations

describe the conservation of mass, energy, momentum and magnetic flux, respectively.

2.1 Numerical aspects

This MHD system can be written as a conservation law in the form

∂U
∂t

+∇ · F(U) = S(U), (2)

where U = (ρ, e,u,B) is the vector of conservative variables, F = F(U) and S = S(U)
are the flux and source term vectors.

The magnetic field divergence constraint ∇ · B = 0 is not satisfied numerically, and
it can lead to unphysical behavior in the numerical solution of the MHD model. Thus
it is necessary to avoid the generation of numerical errors by adding a correction to the
system, which prevent magnetic monopoles in the solution of the model. Two-techniques
are proposed to reduce that effect:

1. Eight-wave MHD model (FLASH code) It uses the 8-wave source-term ap-
proach proposed by [11], which stabilizes the numerical method by adding source
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terms proportional to ∇·B on the right-hand side of the system, i.e. the source term
vector S = (0,−B∇ ·B,−u∇ ·B,−(u ·B)∇ ·B) is added to the MHD equations.

2. Generalized Lagrange Multiplier MHD model (CARMEN code) It uses
the ideal MHD model with Generalized Lagrange Multiplier (GLM-MHD) with a
parabolic-hyperbolic correction [1]. This divergence cleaning approach does not guar-
antee null divergence, but it prevents magnetic monopoles to occur by propagating
and dissipating the divergence errors. In this case we introduce a new scalar variable
ψ, by adding the term ∇ψ to the left-hand size of the Equation 1d and defining a
new equation to the ideal MHD system

∂ψ

∂t
+ c2

h∇ ·B = −
c2
h

c2
p

ψ, (3)

where cp and ch are the parabolic-hyperbolic parameters, with ch > 0, defined as
ch = ch(t) := νCFL

min{∆x,∆y}
∆t , where the Courant number νCFL ∈ (0, 1), ∆x and

∆y are the space steps and ∆t is the time step. We also consider the parameter
α = ∆h ch/c

2
p, where ∆h = min(∆x,∆y) [9].

Finite volume context. The two numerical models use the finite volume method
to discretize the MHD equations, in which the domain is partitioned into cells (or
volumes). This method is based on the integral form of the conservation laws and
ensures the conservation of the system. To compute the flux F through the cell
interfaces, we use the Harten-Lax-van Leer Discontinuities (HLLD) Riemann solver
[10] due its efficiency to resolve isolated discontinuities, and assure the 2nd-order in
space with the monotonized central (MC) reconstruction [13], in both codes.

MR method based in an adaptive cell average approach as discussed
in [7, 8] . Applying the multiresolution transform in the cell averages, we de-
compose them into different refinement levels and, from that, we obtain the local
approximation error between the levels. These errors are called details or wavelet
coefficients. The idea of adaptivity starts from the wavelet coefficients, which can
measure the local regularity of the data according to a given threshold parameter
ε` = ε(ε0, `), where ` denotes the cell scale level and ε0 is the initial threshold param-
eter. When the details are larger than ε` the computational mesh needs to be more
refined locally; otherwise the mesh can remain coarser. This methodology allows the
computational mesh to be more refined merely where it is required. In this work, we
take into account the level-dependent and constant threshold parameters, in which
the first varies with the level ` and the other one remains unchanged for every `, with
0 ≤ ` ≤ L− 1. The number of cells on the finest grid is defined as 22L, where L the
finest scale level.

Time evolution. In both models the simulation is evaluated with a 2nd-order
method. In CARMEN code, we have a compact Runge-Kutta, while in FLASH code
a one-step Hancock is used. The system is completed by suitable initial and boundary
conditions and the two-dimensional form of this system is considered.
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3 Numerical Experiment

In fluids or plasmas, Kelvin-Helmholtz instability is triggered by a velocity shear as dis-
cussed, for instance, in [4]. In our simulations, we consider the initial conditions presented
in Table 3, with

u0
x = 5(tanh(20(y + 0.5))− (tanh(20(y − 0.5)) + 1)),

u0
y = 0.25 sin(2πx)(exp[−100(y + 0.5)2]− exp[−100(y + 0.5)2]),

and the boundary condition periodic everywhere. The computational domain is Ω =
[0, 1.0]× [−1.0, 1.0] and the finest scale is L = 9, i.e. a 512× 512 mesh. We also define as
parameters the Courant number νCFL = 0.4, γ = 1.4 and the physical time t = 0.5. For
the divergence-cleaning we have α = 0.4.

Table 1: Kelvin-Helmholtz instability initial condition.
ρ p ux uy uz Bx By Bz

1.0 50.0 u0
x u0

y 0.0 1.0 0.0 0.0

For the MR approach, we have the threshold parameters ε0 = 0.1, ε0 = 0.5, ε = 0.25
and ε = 0.5.

In the following, we present the results obtained with FLASH and CARMEN codes for
this Kelvin-Helmholtz instability problem. The graphical representation of the solution
obtained with both FLASH (left) and CARMEN (right) codes are presented for the variable
ρ in Figure 1. Figure 2 presents the cuts for the variable ρ in x = 0.5 and y = 0.5, for
ε = 0.25 at t = 0.5. The results are very similar and they are limited by the same maximum
and minimum values.

The cuts at x = 0.5 and y = 0.5 are the most critical in the simulation domain, due
to many discontinuities located. According to Figure 2, the solution obtained with the
GLM-MHD model approaches to the FLASH code solution. It also happens to the other
MHD variables for every choice of ε0 and ε we use here. The adaptive meshes at times
t = 0.0, t = 0.25 and t = 0.5 are presented for ε = 0.25 in Figure 3. In this simulation
the use of memory (percentage of cells) over time is 26% when compared to a uniform
grid. This percentage increases when the level-dependent threshold is used, because of it
adaptivity at each level of refinement that demands more cells to evaluate the solution,
e.g. the percentage of memory for ε0 = 0.5 is 52%. Table 2 shows the norm L1, L∞
and L2 values for the variable ρ when the solution is compared with the reference. For
the level-dependent threshold parameter the norms are slightly smaller than the constant
parameter approach. The values for ε = 0.25 and ε0 = 0.5 remains very close, indicating
similar accuracy even for different memory use.
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FLASH CARMEN

Figure 1: Variable ρ obtained at t = 0.5 and L = 9, with FLASH and CARMEN codes for
ε = 0.25.

(a) (b)

Figure 2: Cuts of variable ρ obtained at t = 0.5 and L = 9, with FLASH code (blue) and
CARMEN code (red) for ε = 0.25, on (a) x = 0.5 and (b) y = 0.5.

Table 2: Norms L1, L∞ and L2 of the variable ρ for ε0 and ε.
ε0 ε

0.1 0.5 0.25 0.5
L1 (10−3) 2.831 3.033 4.113 5.651
L∞ (10−1) 0.878 1.365 1.438 1.318
L2 (10−5) 1.492 1.631 1.930 2.800
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t = 0.0 t = 0.25 t = 0.5

Figure 3: Adaptive MR mesh at t = 0.0, t = 0.25 and t = 0.5 obtained with CARMEN
code with ε = 0.25.

4 Final Remarks

We presented a wavelet based MR approach to compute the Kelvin-Helmholtz instabil-
ities with the GLM-MHD system and compared its results to those obtained with FLASH
code. It was shown that the solution of the problem achieved with the adaptive MR is very
close to the reference solution, and by taking cuts in the domain and the norm values we
ensure that it leads to the expected solution. The adaptive method proved to be efficient
to keep the accuracy of the solution even decreasing the number of cells in the simulation.
We conclude that the presented methodology is relevant in this instability context and
interesting to be extended to more complex space physics problems in future works.
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