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Abstract. There are different possibilities of choosing balanced pairs of approximation
spaces for dual (flux) and primal (pressure) variables; to be used in discrete versions of the
mixed finite element method for elliptic problems arising in fluid simulations. Three cases
shall be studied for discretized three dimensional formulations, based on tetrahedral, hexa-
hedral, and prismatic meshes. The principle guiding the constructions of the approximation
spaces is the property that, the divergence of the dual space and the primal approximation
space, should coincide, while keeping the same order of accuracy for the flux variable, and
varying the accuracy order of the primal variable. Some cases correspond either to the classic
spaces of Raviart-Thomas, Brezzi-Douglas-Marini, Brezzi-Douglas-Fortin-Marini or Nédélec
types. A new kind of approximation is proposed by further incrementing the order of some
internal flux functions, and matching primal functions at the border fluxes. In this article
we develop a unified error analysis for all these space families, and element geometries.

Keywords. H(div) spaces, mixed formulation, approximation space configurations, con-
vergence rates, 3D meshes.

1 Introduction

Mixed finite element methods have the ability to provide accurate and locally conser-
vative fluxes, an advantage over standard H1-finite element discretizations [3]. They are
based on simultaneous approximations of the primal (pressure p) and dual (flux σ) vari-
ables, involving two kinds of approximation spaces (Vh, Uh). For the present analysis, they
are supposed to be piecewise defined on affine partitions Γh = {K} of the computational
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domain Ω by either tetrahedral, hexahedral or prismatic elements K. For the definitions
of the approximation spaces, some general aspects are usually taken into account:

• There are spaces Pk(K) of polynomials restricted to K used in the construction of
scalar approximations for the primal variable, where the index k refers to the poly-
nomial degree. For tetrahedra, the polynomials in Pk(K) have total degree k, and
for hexahedra, they have maximum degree k in each coordinate. For prismatic ele-
ments, Pk(K) is formed by polynomials of total degree k in the triangular faces, and
of maximum degree k in the complementary direction. Vectorial polynomial spaces
Pk(K) mean that the components of the vectorial shape functions are obtained from
polynomials in Pk(K).

• The approximation subspaces Uh ⊂ L2(Ω) for the primal variable are piecewise
formed as u|K = uK , for K ∈ Γh, without any continuity constraint.

• The approximation subspaces Vh ⊂ H(div,Ω) are formed by functions q piecewise
defined over the elements of Γh by local functions qK = q|K , which are spanned by
hierarchical vectorial bases in H(div,K). The shape functions Φ in those bases can
be classified as of interior type, with vanishing normal components over all element
faces. Otherwise, Φ is classified as of face type, with normal components vanishing
over all other faces not associated to it.

• In all the cases, the choices of the approximation spaces are guided by the property

∇ ·Vh = Uh, (1)

in order to obtain stable results with optimal L2-error convergence orders, which
are dictated by the degree of the complete set of polynomials used to form the
corresponding approximation spaces.

Three cases shall be studied. Some correspond to classic Raviart-Thomas [6, 8], Brezzi-
Douglas-Marini [1], Brezzi-Douglas-Fortin-Marini [2], and Nédélec [7] space types. A new
kind of approximations is proposed by further incrementing the order of some internal flux
functions, and matching primal functions at the border fluxes. The main purpose is to
develop a unified error analysis for the mixed method based on all these families of space
configurations, and element geometries.

In Section 2, the mixed finite element method is set for a model problem, and the
three kinds of space configurations are described. Section 3 is dedicated to summarize
the classic techniques that can be used in a unified way for stability and error analyses of
approximate solutions (σh, uh) ∈ Vh×Uh of the mixed formulation based on such spaces.
For this end, it is necessary to define projections commuting the de Rham diagram, which
is the subject developed in Section 4. Summarizing conclusions are given in Section 5.

2 Mixed finite element method for a model problem

As studied in [3], H(div)-conforming discretized versions of the mixed formulation
search for approximate solutions σh and uh in finite dimensional subspacesVh ⊂ H(div,Ω)
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and Uh ⊂ L2(Ω), such that for all q ∈ Vh, and ϕ ∈ Uh

ˆ

Ω
σh · q dΩ−

ˆ

Ω
uh∇ · q dΩ = 0, (2)

ˆ

Ω
∇ · σhϕ dΩ =

ˆ

Ω
f ϕ dΩ. (3)

Three kinds of space configurations for (Vh, Uh) shall be considered in this article.

Approximations of type Pk Pk−1. For this configuration, the dual approximation
space of type Pk is based on a complete vector valued polynomials of degree k, and the
primal approximation space of type Pk−1 is based on the complete scalar valued polynomi-
als of degree k−1. However, it is well known that this kind of space configuration satisfying
property (1) can only be valid for triangular and tetrahedral meshes, corresponding to the
classic BDMk elements, for which L2-error convergence of orders k + 1 and k, for dual
and primal variables can be obtained.

Approximations of type P∗

k Pk. For all the geometries, another type of space config-
uration can be considered. Guided by the verification of property (1), the dual approxi-
mations are said to be of P∗

k type if are locally spanned by the face functions of Pk(K)
type, and by the internal shape functions of Pk+1(K), defined by a vectorial polynomi-
als of degree k + 1 whose divergence are included in the primal approximation space of
type Pk(K). Since the incomplete dual approximation space of type P∗

k only involves the
complete vector valued polynomials of degree k, in simulations using P∗

k Pk configura-
tions, the expected L2-error convergence rates are of order k+1 for, both dual and primal
variables. This is the type of RTk space configuration for quadrilateral geometries, and
their generalization to hexahedral partitions in [6], and of BDFMk+1 elements for trian-
gular or tetrahedral elements. For prismatic elements, P∗

k(K) contains Nédélec’s elements
Nk(K) [7].

Approximations of type P∗∗

k Pk+1. The construction of flux approximation spaces
of type P∗∗

k consists in adding to the complete vector valued spaces of type Pk those
interior shape functions of P∗

k+1(K) defined by vectorial polynomials of degree k+2 whose
divergence are included in the primal approximation space of type Pk+1(K). Therefore,
in P∗∗

k (K), the face shape functions are still obtained by polynomials of degree ≤ k, but
some of the internal shape functions may be obtained from polynomials of degree up to
k+2. As in the previous case, the verification of property (1) is the basic principle guiding
the definition of the pair of approximation spaces. For this setting, P∗∗

k (K) contains only
the complete vector valued approximations Pk(K), and the L2-error convergence rate of
order k+1 is expected for the dual variable. However, for primal variable, a higher order
k + 2 may be reached. To our knowledge, space configurations P∗∗

k Pk+1, which are valid
for all element geometries, are new in the literature.
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3 Error estimates

Similar to the unified error analysis described in [3] for a variety of approximation
settings, let us denote by M(K) any of the local approximation spaces either of type
Pk(K), P∗

k(K) or P∗∗

k (K), restricted to elements K ∈ Γh. We have, Pk(K) j M(K) and
Pk+1(K) * M(K). Let also consider scalar spaces D(K) = ∇ ·M(K). For thetrahedra,
D(K) = Pk−1(K) for the BDMk spaces, where M(K) = Pk(K). For all geometries,
D(K) = Pk(K) for spaces M(K) = P∗

k(K), andD(K) = Pk+1(K) whenM(K) = P∗∗

k (K).
Consider pairs of spaces Vh × Uh defined by local approximations

Vh = {q ∈ H(div,Ω); q|K ∈ M(K), K ∈ Γh} , Uh =
{

u ∈ L2(Ω); u|K ∈ D(K), K ∈ Γh

}

.

By construction, the crucial property ∇ · Vh = Uh holds. Therefore, classic techniques
can be used for stability and error analyses of approximate solutions (σh, uh) ∈ Vh × Uh

of the mixed formulation based on such spaces. For this end, it is necessary to define
projections

Λh ×Πh : H1(Ω)× L2(Ω) → Vh × Uh

commuting the de Rham diagram

H1(Ω)
∇·
−→ L2(Ω)

↓ Λh ↓ Πh

Vh
∇·
−→ Uh.

The functional space H1(Ω) ⊂ H(div,Ω) denotes the vector space analogue of H1(Ω),
which is used in order to guarantee L2-integrable normal traces q · ηK |∂K over element
boundaries.

For z ∈ L2(Ω), the projection Πhz on the scalar approximation space Uh is usually
taken as the L2-projection such that

ˆ

Ω
(z −Πhz)ϕdΩ = 0, ∀ϕ ∈ Uh.

For smooth vectorial functions q ∈ H1(Ω) ⊂ H(div,Ω), the projection Λhq can be defined
in terms of local projections by

Λhq|K = λKq, ∀K ∈ Γh,

where λK : H1(K) → M(K) should verify the local de Rham property

∇ · λKq = πK∇ · q, (4)

and πK denotes the L2-projetion on D(K). Based on such properties, Proposition 1.2, p.
139 in [3] establishes convergence rates of the form

||σ − σh||0 = O(hk+1), (5)

||u− uh||0 = O(hs), (6)
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with s = k for BDMk spaces of type Pk Pk−1 for tetrahedral partitions, s = k + 1
when spaces of type P∗

k Pk are used, for tetrahedral BDFMk+1 elements, and hexahedral
Raviart-Thomas elements RTk. Here ||.||0 denotes either the usual L

2-norms of vectorial or
scalar spaces. In addition, because the meshes are supposed to be affine, and from the fact
that ∇·σh is the L2(Ω)-projection of ∇·σ on Uh, the divergence error ||∇·σ−∇·σh||L2(Ω)

has the same accuracy rate as the error in u.
In the next section, local projections λKq commuting the local de Rham diagram shall

be defined. Based on their properties, similar convergence rates hold for the new spaces
of type P∗

k Pk based on prisms, as in BDFMk+1 for tetrahedra, and RTk for hexahedral
meshes. Furthermore, the main result of this paper concerns error estimates for the new
P∗∗

k Pk+1 space configurations. With respect to the accuracy of order k + 1 for the flux,
we conclude that enhanced accuracy order s = k+2 for the primal variable can be verified
for all element geometries.

4 Local projections commuting the de Rham diagram

This part is dedicated to the study of the required local projections λKq verifying the
commuting de Rham diagram property (4), for all spaces M(K) either of type Pk(K),
P∗

k(K) or P∗∗

k (K), described in Section 2, which are crucial for the error analysis.
For all cases, let the space

P (∂K) =
{

φ ∈ L2(∂K);φ|F ∈ Pk(F ) on the faces F of K
}

represents the normal traces of functions in M(K). Consider direct decompositions
M(K) = M∂(K) ⊕ M̊(K), where M̊(K) = {σ ∈ M(K); σ · ηK |∂K = 0} is the space
of internal functions in M(K), and M∂(K) being its complement.

Following the suggestions in [5], let us consider local projections factorized as λKq =
q∂ + q̊, with boundary terms q∂ ∈ M∂(K), and internal terms q̊ ∈ M̊(K). The following
observations are in order for the factorizations of different settings of M(K).

1. The boundary contributions q∂ can be computed in terms of the face shape functions
in Pk(K), for all the cases.

2. The specifications for the internal contributions q̊ depends on the specific space
configuration adopted.

For the tetrahedral elements there are three settings:

1. M(K) = Pk(K), D(K) = Pk−1(K): for this case, denote λK = ρk,K for the classic
BDMk projection on Pk(K). Then q̊ = λK(q− q∂) ∈ Pk(K), with q̊ · ηK |∂K = 0,
can be computed in terms of the internal shape functions in Pk(K).

2. M(K) = P∗

k(K) and D(K) = Pk(K): in this case, let λK = ρ∗k,K be the classic
BDFMk+1 projection on P∗

k(K). Then, q̊ = q̊∗ = ρ∗k,K(q − q∂) ∈ P∗

k(K) with
q̊∗ · ηK |∂K = 0. Since the internal spaces in P∗

k(K) and in Pk+1(K) coincide for
tetrahedral elements, then this internal contribution can also be represented as q̊∗ =
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ρk+1,K(q − q∂), in terms of the BDMk+1 projection on Pk+1(K), which can be
expressed in terms of the internal shape functions of Pk+1(K).

3. M(K) = P∗∗

k (K) and D(K) = Pk+1(K): since for tetrahedral elements the three
internal spaces in P∗∗

k (K), P∗

k+1(K) and Pk+2(K) coincide, for this particular setting
we propose to define λK = ρ∗∗k,K as the projection such that q̊∗∗ = ρ∗k+1,K(q−q∂) =
ρk+2,K(q − q∂), with q̊∗∗ · ηK |∂K = 0. Thus, q̊∗∗ can be computed by either the
BDFMk+1 or by the BDMk+2 projections, meaning that it can be expressed by the
internal shape functions of Pk+2(K).

For hexahedral and prismatic elements there are two different settings:

1. M(K) = P∗

k(K) and D(K) = Pk(K). For hexahedral elements: the projection
λK = ρ∗k,K is taken by the classic RTk projection, as proposed in [6], for which
q̊∗ = ρ∗k,K(q − q∂) ∈ P∗

k(K), with q̊∗ · ηK |∂K = 0. For prismatic elements, this
framework shares with the previous Nédélec’s setting the scalar spaces D(K) and
P (∂K), and the boundary space M∂(K) as a consequence. Since M̊(K) strictly
contains the internal Nédélec’s functions, a projection λK = ρ∗k,K on P∗

k commuting
the de Rham diagram can be derived from the Nédélec’s projection, similarly as in
Appendix B of [4], where the case of RT spaces of variable degree on a simplex is
considered.

2. M(K) = P∗∗

k (K) and D(K) = Pk+1(K), for hexahedral and prismatic elements:
since the internal spaces in P∗∗

k (K) coincide with the corresponding internal spaces
in P∗

k+1(K), assuming projections ρ∗k,K being stated, λK = ρ∗∗k,K is defined by taking
q̊∗∗ = ρ∗k+1,K(q− q∂), with q̊∗∗ · ηK |∂K = 0, which can be expanded by the internal
shape functions of P∗

k+1(K). Recalling the definition ρ∗∗k,Kq = q∂ + q̊∗∗, we obtain
∇·ρ∗∗k,Kq = ∇·q∂ +∇·ρ∗k+1,K(q−q∂). Since q∂ ∈ Pk, we get ∇·q∂ = πk+1,K∇·q∂ ,
and using the commuting de Rham property ρ∗k+1,K ∇·ρ∗k+1(q−q∂) = πk+1,K∇·(q−
q∂), which is valid for all projections ρ∗k+1,K associated to the settings Mk+1(K) =
P∗

k+1(K) and Dk+1(K) = Pk+1(K), then the desired commuting property holds for
ρ∗∗k,Kq as well.

5 Conclusions

Different choices of balanced finite element approximation spaces for dual and primal
variables, based on tetrahedral, hexahedral and prismatic meshes, are considered for dis-
crete versions of the mixed finite element method for three dimensional elliptic problems.
The principle guiding the constructions of the approximations is the property that, the
divergence of the dual space and the primal approximation space, should coincide, while
keeping the same order of accuracy for the flux variable and varying the accuracy or-
der of the primal variable. In all these three settings, the degrees of freedom associated
with internal flux functions can be condensed. Therefore, for each element geometry, and
fixed degree k used in the border flux approximations, the resulting global condensed ma-
trices have identical sizes. Convergence studies are presented to show optimal rates in
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L2-norms for primal and dual variables, which are determined by the degree of the com-
plete polynomial spaces, included in the corresponding approximations spaces. In fact, the
convergence rates for the dual variable do not change by increasing the degrees of internal
flux functions, being the same computational cost to obtain higher optimal convergence
rates.
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