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Abstract. This work presents an element based finite volume methodology (EbFVM) [11]
for solving two-dimensional viscoelastic fluid flows. The method can easily deal with hybrid
unstructured meshes consisting of both triangular and quadrilateral elements, which allows
the discretization of complex geometries. To overcome the problem of partial decoupling
of pressure and velocity fields due to the use of a collocated arrangement of variables, it
is used a interpolation function of the FIELDS type. Such a function also promoted the
inclusion of pressure and stresses in the mass conservation equation improving conditioning
of the coefficient matrix of the system of discretized equations. The advection terms in the
constitutive equations are approximated using the single point upwind scheme. For testing
different aspects of the numerical solution two classic benchmark problems were solved: flow
between fixed parallel plates, and 4:1 planar contraction flow.
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1 Introduction

Viscoelastic fluids are used extensively in many industries such as plastic, food, elec-
tronics, oil and gas etc. Thus the numerical simulation of viscoelastic flows problems
became an important research field. Over the last three decades, many important devel-
opments have been made in numerical modeling of viscoelastic flows. In the eighties and
nineties, the finite element method has dominated the field of computational rheology,
and most of the research was focused on the high Weissenberg number problem (HWNP),
which causes numerical instability. Therefore, stabilization techniques have been used suc-
cessfully by several authors. Recently, finite volume methods have been widely used for
viscoelastic fluid flows. This is mainly due to its discrete conservation properties and sav-
ings in computational resources when compared to finite element methods [2,7]. The first
studies focused on solving planar contraction flow of an Oldroyd-B fluid on a non-uniform
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staggered grid with pressure and stress located at the center of the control volume. This
arrangement avoids numerical instabilities related to the singularity at the re-entrant cor-
ner. However, staggered grids are not easily adapted to complex geometries. In order to
overcome this difficulty, the co-located arrangement began to be used by several authors
for both structured and unstructured meshes. In most cases the pressure-velocity-stress
decoupling was removed by using the SIMPLE-like approach [2, 8] or an interpolation
similar to that employed by Rhie [12].

This paper presents a finite volume method on the framework of the Element-based
Finite Volume Method (EbFVM) to solve the system of governing equations of viscoelastic
fluid flows. The pressure-velocity-stress decoupling is removed by using an interpolation
similar to that used by Raw [11] in developing the FIELDS method for the solution of the
Navier-Stokes equations on quadrilateral meshes.

2 Governing Equations and numerical method

Incompressible and isothermal creeping flow of a Oldroyd-B fluid in a bounded domain
Ω ⊂ R2 with external forces neglected is considered. The governing equations are rep-
resented by conservation laws for mass and momentum, in conjunction with an equation
of state for stress. Since one is seeking for steady solutions at low Reynolds number, the
system may be expressed in dimensionless form as:

∇ · v = 0, (1)

−β∇ · ∇v +∇p = ∇ · τ , (2)

τ +We
[
v · ∇τ − (∇v) · τ − τ · (∇v)T

]
= (1− β)

(
∇v + (∇v)T

)
, (3)

where v is the fluid velocity, p the hydrodynamic pressure, τ is the elastic stress tensor,
β is the ratio of the retardation and relaxation times of the fluid, i.e. β = λ2/λ1. The
non-dimensional Weissenberg number is defined by We = λ1V

L , where V represents a
characteristic velocity and L a reference length.

As mentioned before, the above system of equations is solved using the Element-based
Finite Volume Method (EbFVM) [6, 9, 11] which enabled using of unstructured hybrid
grids (constituted by triangular and/or quadrilateral elements) of cell-vertex type (Figure
1). More details can be found elsewhere [3, 4, 6, 11].

Figure 1: Main geometrical entities on the element-based finite-volume method
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2.1 Discretization of governing equations

After integration of differential equations (1) - (3) over a polygonal control volume Vp
like the one depicted in Figure 1, they can be approximated, respectively, as∑

e∈Ep

∑
f∈Fe

p

vḟ ·∆Sf = 0, (4)

−β
∑
e∈Ep

∑
f∈Fe

p

(∇v)ḟ ·∆Sf +
∑
f∈Fe

p

(P∗i )ḟ ·∆Sf

 =
∑
e∈Ep

∑
f∈Fe

p

(τ ∗i )ḟ∆Sf , (5)

(τ̆ )p ∆Vp +
∑
e∈Ep

∑
f∈Fe

p

Qf (τ )ḟ −We
(

(∇v) · τ̆ − τ̆ · (∇v)
T
)
p

∆Vp = (1− β)
(
∇v + (∇v)

T
)
p
∆Vp,

(6)

where P∗
i represents the ith column of the pressure tensor P, τ ∗

i represents the ith column
of the elastic stress tensor τ , ∆Sf denotes the normal outward area vector to the control
volume face f , as shown in Figure 1. Here Qf ≈ vḟ ·∆Sf is the volumetric flow rate. In
this paper, we used the diacritical mark (˘) to indicate that a given discretized variable
is associated with a node. Herein Fep represents the set of control volume faces around the
node p located inside element e and Ep denotes the set of all elements surrounding the
control volume around node p. For more details concerning to the EbFVM discretization
process, see references [6], [4] and [3].

2.2 Spatial interpolation

The discretized equations need to involve only nodal values of the unknowns. Thus,
spatial interpolation schemes are needed for relating integration point values to the nodal
values.

The momentum equation is an elliptic equation and a second order scheme, like bilinear
shape functions [6,11], can be used safely for expressing integration point values of pressure,
stress and velocity gradient as a function of correspondent nodal values.

Linear-type spatial interpolations, are not suitable for computing velocities at integra-
tion points in equation (4), because it produces unrealistic spurious spatial oscillations and
unbounded values. Moreover, the absence of pressure in the continuity equation caused
by collocated arrangement of the variables can result in a checkerboard problem. To over-
come those problems it is employed a strategy similar to that used by Raw [11] which uses
a local approximation of momentum equation at the integration point for construction of
the interpolation function velocity. In this way, for the case considered here, we apply the
momentum equation (2) at the face centroid, using a bilinear approximation for pressure
and stress at the nodes and the approximation for the Laplacian proposed by Raw [11] we
get the interpolation function for the velocity vḟ :

vḟ ≈ V̆T
e Nḟ −

L2
d

β
GT(P̆∗

i )
e +

L2
d

β
GT(τ̆ ∗

i )e, (7)

where Ld is an appropriate diffusion length scale [11] and V̆T
e is the matrix containing the

nodal values of the velocity components.
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The interpolation function (7) promotes the coupling between pressure, stress and
velocity fields.

Since Qf (τ )ḟ is an hyperbolic term, linear-type spatial interpolations are not suitable
because they produce unrealistic solutions with spurious oscillations [5]. In order to avoid
this, upwind-type schemes are commonly used. In this work we use the so called single
point upwind (SPU) scheme, which consists of approximate the value at an interface
between two adjacent volumes by the nodal value located upstream of this interface.

3 Results and discussion

The numerical method is first tested for solving the flow of an Oldroyd-B fluid in
a simple geometry, a planar channel, for which analytical solution is easily obtained [2].
Following, a steady 4:1 contraction flow is considered. We use Picard’s iterations to reduce
the nonlinear problem to a sequence of linear solvers.

3.1 Flow in a planar channel

It is initially considered steady creeping flow of an Oldroyd-B fluid model through
a planar channel, with length of 10H and width of 2H, as shown in Figure 2a. The
length H is 1 m and V = 1 m/s. The ratio β is set to 0.2. Fully developed flow is
imposed at the inlet and, due to memory effects of viscoelastic fluids, all components of
the viscoelastic stress must also be prescribed. They are, u = 3

2(1 − y2), v = 0, τxx =

2We(1 − β) (∂u/∂y)2 , τyy = 0, τxy = (1− β) ∂u/∂y. No-slip and permeability boundary
condition are imposed at the solid boundaries. At the outflow boundary pressure is set to
zero and homogeneous Neumann boundary conditions are considered for stresses. In order
to demonstrate the unstructured capability of the method, simulations are carried out on
the mesh shown in Figure 2b, which consist of brick elements and non-regular triangular
elements. Numerical results of the stresses are shown Table 1. The L2 error for the stress

(a)

(b)

Figure 2: (a) 2-D channel geometry in xy-plane, (b) 2-D unstructured hybrid mesh.

components are shown along cross-sections at x = 2.5 and x = 5, the delicate transition
point from quadrangular to triangular elements, and at x = 7.5, for different values of
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We. We can conclude that the agreement between the analytical and numerical solutions
is very good.

Table 1: The L2 errors for τxx and τxy stresses at x = 7.5, x = 5, and x = 2.5

Stress We = 0.1 We = 0.3

x = 7.5 x = 5 x = 2.5 x = 7.5 x = 5 x = 2.5

τxx 4.1× 10−5 2.5× 10−4 1.4× 10−4 6.2× 10−5 2.7× 10−4 1.6× 10−4

τxy 1.1× 10−4 3.2× 10−4 2.9× 10−4 1.8× 10−4 3.4× 10−4 2.8× 10−4

Stress We = 0.6 We = 0.9

x = 7.5 x = 5 x = 2.5 x = 7.5 x = 5 x = 2.5

τxx 1.53× 10−4 3.4× 10−4 2.4× 10−4 2.4× 10−4 4.9× 10−4 3.8× 10−4

τxy 2.1× 10−4 4.12× 10−4 2.7× 10−4 1.1× 10−4 4.2× 10−4 2.2× 10−4

3.2 The 4:1 Planar contraction flow

In this section we consider the flow of an Oldroyd-B fluid through an abrupt 4:1 planar
contraction with a sharp corner. A schematic diagram of the lower half of this geometry
is shown in Figure 3a. The major difficulty in the simulation of such type of problems
lies in the region of contraction where the existence of a singularity point is said to cause
many numerical methods to fail due to the large stresses developed in this region. A fine
mesh around the corner needs to be used to capture correctly the singularity, as shown
in Figure 3b. For this contraction flow simulations V = 1/3 m/s and L = 1 m, so that
We = λ1/3 and the parameter β is taken to be 1/9. It is assumed that the downstream
channel length is long enough so that the flow has a fully developed parabolic profile at the
exit. At the inlet we prescribe a fully developed parabolic Poiseuille velocity profile given
by u = 1

128(16 − y2), v = 0. Due to memory effects of viscoelastic fluids, all components
of the elastic stress must be prescribed, that is τxx = We (1 − β) 1

2048y
2, τyy = 0, τxy =

− (1− β) 1
64y. At the outflow, pressure is set to zero. No-slip conditions are imposed on

solid walls for u and v and symmetry conditions are specified on axis of symmetry.

(a) (b)

Figure 3: (a) Contraction flow geometry. (b) Contraction flow mesh

Figures 4a, 4b, and 4c present the evolution of the stress components along the line
y = −1 for different values of We. As we can see, the stress components attains their
maximum at the re-entrant corner. For the second and third components of the stress
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tensor the curves are quasi-identical and are independent of Weissenberg number, which
is expected [7]. Contour plots of the stress components are presented in Figures 4d, 4e,

(a) (b) (c)

(d) (e) (f)

Figure 4: Stresses profiles along the line y = −1 for a range of values of We: (a) τxx stress
component, (b) τyy stress component, (c) Shear stress τxy. Stress contours for We = 1.7:
(d) τxx stress component, (e) τyy stress components, (f) Shear stress τxy

and 4f for We = 1.7, which is the maximum value of Weissenberg number achieved in our
computations. The stress contours are smooth around the corner singularity, while stress
boundary layers develop downstream of the re-entrant corner. It is also observed a high
stress concentration for τxx and τxy at the wall just after downstream the re-entrant corner.
These findings are in close correspondence with those found in references [1, 2, 7, 10].

4 Conclusions

The numerical methodology presented in this paper has contributed for the theoretical
development of the EbFVM for solving viscoelastic fluid flow problems. The approach
of using a unique numerical method for the solution of both constitutive equations and
conservation of mass and momentum equations, and the new interpolation function for
approximating velocities at the integration points in the mass conservation equation facili-
tates the pressure-velocity-stress coupling as well as the development of the computational
code. The ability of solving different physics with the same numerical method is a strong
point in favor of the EbFVM method.
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