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Enclosing a periodic orbit of processes in the plane

Berenice Camargo Damasceno1
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Abstract. We give here a method for the definition of a closed continuous curve C in
the y ≥ 0 semi-plane coming from an equation of the Liénard type, in such a way that C
surrounds the y ≥ 0 - piece of a periodic orbit of the equation itself.
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1 Introduction

The existence of periodic orbits for Liénard equations is one of the most considered
issues in the field of the nonlinear ODE in the last fifty years. This work deals with the
existence of periodic orbits in a very large class (S) of nonlinear second order differential
equations of the Liénard generalized type including as special cases the classical Liénard
ones, as well as the fractional power VdP equations and some TNO (truly nonlinear os-
cillators) considered by R. Mickens [4,5]. Through the algebraic expression concerning
continuous closed curves in R2 by comparing slopes along such curves we make consider-
ations on the following aspects on (S): the stability of singular points, and the existence
of periodic orbits. The system (S) is represented by the equation

ẍ− f(x)g(ẋ) + h(x) = 0, (1)

where f, h are differentiable and g is continuous with g(y) > 0 for y > 0. Suppose further
that f has only a finite number of zero points in which the derivative of f is non-zero and
that,

g(0) = 0 and h′(0) 6= 0. (2)

The first order version of equation (1) in R2 is{
ẋ = y
ẏ = f(x)g(y)− h(x)

. (3)
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2 Periodic orbits

2.1 The singular point and stability

A first question we ask when designing the phase portrait in (3), concerns the stability
of the critical point (0,0). Classical results using linearization in (3) are well known. One
of these results says, for instance, that if f(0)g′(0) > 2 then the eigenvalues in the system
are strictly positive and in this way, (0, 0) is unstable as we can see in [3]. In this direction,
we can prove another result for systems in (3):

If there is s > 0 such that for all 0 < ε < s we have

f(x)g(
√
ε2 − x2)− h(x) + x > 0, x ∈ (−ε, ε),

then (0, 0) is an unstable singular point for (3). If otherwise

f(x)g(
√
ε2 − x2)− h(x) + x < 0, x ∈ (−ε, ε),

(0, 0) is then a stable one.
In fact: the slope of the orbits in (3) through the point (x, y) are done by:

dy

dx
=
dy

dt
.
dt

dx
= f(x)

g(y)

y
− h(x)

y
.

Because we supposed for y > 0 that

f(x)
g(y)

y
− h(x)

y
> −x

y
, (4)

and because ẋ = 0, then by naming Cε = Cε(x, y), the semi-circle centered at (0, 0) with
radius ε and y > 0, we have all orbits in (3) that cross the curve Cε∪(−ε, 0), (ε, 0), crossing
it from the inside part [respect to the point (0,0)] to the outside one.

We showed in this way that the singular orbit (0, 0) is repulsive. From now on, we
consider the unique singular point (0, 0) in the system being unstable.

2.2 The curve Cr

If for all (x, y) ∈ R2, σ2 = x2 + y2 we have along the orbits of (3):

σ
∂σ

∂x
= f(x)g(y) + x− h(x). (5)

Let be the set Z = a1 < a2 < ... < an−1 of the zeros of f , in which f ′ is non-zero.
Suppose that Z 6= ∅, and let be r > 0. Consider in this case

−r = a0 < a1 < a2 < ... < an−1 < an = r. (6)

If Z = ∅ make the sequence a0 = −r < a1 = r.
Let us start defining the closed continuous curve
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Cr = Cr(x, y) (y > 0),

with x ∈ [−r, an] in the clockwise sense beginning at the point (−r, 0) , step by step in
each interval done by (6). For each point (x, y) ∈ R2, let

ρ2 = x2 + y2,

and consider{
ρ2i (x)
2 = SiF (x) + x2

2 −H(x) + ci in[ai, ai+1] if f([ai, ai+1)]) > 0
ρ2i (x)
2 = x2

2 −H(x) + ci in[ai, ai+1] if f([ai, ai+1]) < 0
, (7)

where

Si > max{g(y); yi 6 y 6 yi+1} ; y2j = ρ2(aj)− a2j ; (j ∈ {i, i+ 1}), (8)

and ci is an arbitrary constant (to be determined) for 0 6 i 6 n− 1. The functions F (x),
H(x) are respectively the anti-derivative of f(x), h(x) with independent constant terms
equal to zero.

Observe that the synthesis of an appropriate constant ci in each interval [ai, ai+1],
0 6 i 6 n− 1 , will be ensuring the continuity of Cr on the whole interval [−r, an].

If an orbit γ of (3) intercept the curve Cr, (y ≥ 0), then by comparing (5) and (7) we
have γ crossing Cr from the outside [with respect to (0, 0)] part of the region enclosed by
Cr directed to the inside one. With the aim of be showing the existence of such curve Cr
we need to determine the constants r, Si involved in the above process.

2.3 The constants r, Si (0 ≤ i ≤ n-1)

Because the curve Cr begins at (−r, 0) and ends at (an, 0) and a0 = −r we have
according to (7), in a recursive mode, starting at the interval [a0, a1] that:{

ρ20(a0) = r2 = 2S0F (−r) + r2 − 2H(−r) + 2c0 if f > 0 in (a0, a1)
ρ20(a0) = r2 = r2 − 2H(−r) + 2c0 if f < 0 in (a0, a1)

,

and then: {
c0 = −S0F (−r) +H(−r) if f > 0 in (a0, a1)
c0 = H(−r) if f < 0 in (a0, a1)

.

In this way we get for x ∈ [a0, a1]:{
ρ20(x) = 2S0F (x) + x2 − 2H(x) + 2(−S0F (−r) +H(−r)) if f > 0 in (a0, a1)
ρ20(x) = −2H(x) + x2 + 2H(−r) if f < 0 in (a0, a1)

,

and for x = a1:
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{
ρ20(a1) = 2S0(F (a1)− F (−r)) + a21 + 2(H(−r)−H(a1)) if f > 0 in (a0, a1)
ρ20(a1) = a21 + 2(H(−r)−H(a1)) if f < 0 in (a0, a1)

.

We can calculate the corresponding expressions from the next interval, [a1, a2], till the
last one, [an−1, an], in which we must consider the restraint ρ2n−1(an) = a2n. Cause the
curve Cr is supposed to be continuous we need to have the following conditions being
satisfied:

r2 = ρ20(a0), ρ
2
0(a1) = ρ21(a1), ρ

2
1(a2) = ρ22(a2), ..., ρ

2
n−1(an) = a2n. (9)

Finally, with the purpose of having Cr well-defined, because (8) has to be accomplished,
the conditions (8) and (9) actually set the link between r and Si.

2.4 The existence of a periodic orbit

Due to the fact that (0, 0) is unstable then according the Poincaré-Bendixon theorem,
the existence of the curve Ck for a large enough number k shows that there exists at least
on e periodic orbit of (3) enclosed by such Ck.

Further, despite some works in literature - considering particular equations in the
system (S) - to be able to present an estimate for a point at which periodic orbits must
cross the x-axis, providing in this way an estimate for k, we have not this possibility in
general cases.

Taking on care this situation we can state the result on the existence of a periodic
orbit in (3):

If for r0 > 0 there exists Cr for every r > r0, then (3) has at least one periodic orbit
Γ.

Elsewhere by using different equations but under the same point of view that in this
paper, B. C. Damasceno [2] defined a sequence of curves in R2 approaching indefinitely
such Γ.

3 Conclusions

It was proposed in this paper a very simple method (in the sense that we only used
the fundamental and almost naive analysis on crossing continuous curves in the plane) in
which it was done sufficient conditions for the existence of periodic orbits for a class of
Liénard equations. Notice that in [1] most profound results about the issue are done.
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