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Abstract. This paper brings out the applicability of graph centrality measures to suggest
optimal perforation zones for oil recovery in reservoirs. Combined with a characterization
technique based on HFU/FZI/DRT (Hydraulic Flow Unit/Flow Zone Indicator/Discrete
Rock Type), which identifies regions with similar features of flow by means of best-fit lines
and conversion formulae, the present approach analyses how the rock connectivity inside
a reservoir relates to changes in the oil recovery rates. To verify the consistence of the
techniques employed here, long term numerical simulations of oil recovery from perforation
zones placed at locations with maximum values of closeness centrality are performed and
compared, thus resulting in considerable agreement with prior conjectures.
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1 Introduction

Reservoir characterization plays a fundamental role in petroleum engineering since it
provides practical tools aimed to optimize processes of well placement, perforation and oil
recovery. Generally, mapping the permeability field of a reservoir and locating hydraulic
units for posterior production tests by means of computational simulations is a complex
task which depends mainly on well core and log data. Hydraulic flow unit (HFU) is a
term coined to specify a rock volume whose geological and petrophysical properties are
similar and its accurate determination has been a challenge. Several researchers proposed
different definitions for a HFU which are interlaced by the common ability of favouring
flows. In particular, Hearn [1] says that a HFU is both a laterally and vertically continuous
reservoir zone whose permeability, porosity and bedding characteristics are similar. Later,
Amaefule et al. [2] provided a formal description that allowed the identification of HFUs in
a reservoir when introducing the concepts of reservoir quality index (RQI) and flow zone
indicator (FZI).
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Recently, a couple of different approaches based on the combination of RQI and FZI
along with additional parameters like irreducible water or cementation have been proposed
in the literature. Some of them included neural networks and graphs to find out HFUs
from log data, as reported by [3], [4] and references therein. Nevertheless, none of these
approaches have shown yet the relationship between a HFU and its oil recovery performance.

This paper brings out the applicability of the graph theory and centrality metrics to
suggest optimal perforation zones for oil recovery in reservoirs. The study was performed
over a synthetic field model where a small reservoir associated to a central wellbore was
chosen to form a representative volume with variable discrete rock types. Interesting results
concerning the rock connectivity and its effects on the choice of a wellbore reveal that
the approach may provide additional parameters to detect good perforation zones. Long
term numerical simulations of oil recovery rates from the predicted perforation zones are
presented and compared, thus providing support to the methodology.

2 Reservoir Discretization and Base Equations

The study conducted here relies on a dataset provided by the SPE Model 2 synthetic
field [5], which reconstitutes a large field. From this main volume Ω, which corresponds to
a rectangular grid of 60× 220× 85 cells, we randomly extract a subvolume described by the
region Ω ⊃ Ω

′
(x, y, z;P ) := [x− P, x+ P ]× [y − P, y + P ]× [1, 85], where x, y are surface

coordinates, z is the depth coordinate and P is a “neighbourhood radius”. Let us define
w(x,y,z) an arbitrary cell of Ω and choose the block formed from the column W (45, 68, z) :=
{w(45,68,1), . . . , w(45,68,85)} with radius P = 14 (see Figure 1). Here, W (45, 68, z) is called

the well of interest and Ω
′
(45, 68, z; 14) the volume of interest, to which we will restrict

our study. For brevity, we will use the notation wz, W and Ω
′

for the well’s cells, the well
itself and the reservoir, respectively.

Figure 1: Overview of the domains: (a) field/reservoir/well hierarchy.

The classical Kozeny-Carman (K-C) model provides a relationship to obtain the
permeability k of a porous medium from

k =
1

Fs τ2 S2
gv

φ3e
(1− φe)2

, (1)
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where φe the effective porosity, Fs the grain shape factor, τ the pore tortuosity and Sgv
the specific surface area per grain volume. Alternatively, Amaefule et al. [2] defined a new
form to express the K-C model as√

k

φe
=

1√
FsτSgv

φz, (2)

where φz = φe
1−φe is the normalized porosity. From Equation 2, the reservoir quality index

(RQI) and the flow zone indicator (FZI) were defined as

RQI(µm) = 0.0314

√
k

φe
; FZI =

1√
FsτSgv

, (3)

where 0.0314 is a unit conversion factor used when k is given in milidarcies (md). Then,
Equation 2 is now written as RQI = FZI×φz, which becomes logRQI = logFZI+log φz
after taking the logarithm on both sides. In a log-log plot of RQI versus φz, samples that
lie on the same FZI line with unit slope have a common combination of attributes and
form a HFU. In this line, Guo et al. [6] proposed a discrete rock type technique (from now
on, DRT ) obtained by the equation DRT = round[2 ln(FZI) + 10.6], which makes the
conversion from the continuous approach to the discrete one based on the pair RQI/FZI so
as to allow a complete classification of the reservoir under study. Each DRT is an integer
number that labels distinct HFUs.

3 Graph-Based Modelling and Data Structuring

The distribution of distinct DRT values along the well W leads to the interpretation of
cells that might be identified as good HFUs. That is to say, for each wz ∈W , its associated
value DRT (wz) is useful to indicate the set of cells that comprises a unique HFU. However,
one may conjecture that one or more cells might be a good candidate to specify a perforation
zone. Cells that belong to the same DRT (contiguous or spaced by a small distance) can
be merged into a unique perforation zone so that, under this conjecture, the connected
components around a seed-cell wz provide a DRT -based cluster. A cluster is defined as a
set C = {wi;wj , j, i = 1, 2, . . . , N, j 6= i, are 26-neighbour connected components of wi}
which means that any element of C does share at least on vertex, edge or face with each
other. Mathematically, the transformation from a cluster C to a graph G may be described
by a function F : Ω

′ ⊃ C → G that maps each wi to an associated node vi linked to vj by
the edge eij . Given that, C is computationally stored as an undirected graph G whose
adjacency matrix Madj(G) of order N ×N provides a node-to-node relation based on {0, 1}
wherein 1 stands for connectivity and 0 for none.

Although the well W has 85 elements, their DRT values of practical interest are limited
to the set DRT (W ) := {7, 8, 10, 11, 12, 13, 14, 15}. Moreover, one verifies that several cells
of W belong to a same connected component due to its high predominance in Ω

′
as seen for

the DRT = 13, which will be studied in this paper since it corresponds to the best-fit FZIs.
Figure 2, for instance, depicts the 3D view of the two biggest clusters of cells associated to
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(a) (b)

Figure 2: The two biggest clusters of DRT = 13 that intersect W at several depths.

the DRT = 13. Their scaling differ because of the shape observed in each cluster as well
as of their wider or narrower depth range. By labelling C1 and C2 these two main clusters,
we have their cardinalities given respectively by #(C1) = 7326 and #(C2) = 5666 cells
which, together, respond for about 18% of the reservoir volume Ω

′
. Since C1 and C2 are

very dense, we also verify that two subsets of W , namely W1 = {w3, w8, w11, w12, w13, w14}
and W2 = {w32, w40, w52, w58, w67, w70, w72, w73, w78, w79, w85}, gather several cells either
evenly or unevenly spaced into the same connected component, i.e. W1 ⊂ C1 just as
W2 ⊂ C2, besides picturing the type DRT = 13 into a big two-piece rock formation.

For each DRT , data structures are used to store information related to the cells and
graphs that make up its components. In Figure 3, a scheme is organized to highlight a
fragment of data structure (VOISt) used to store the volume of interest. Variables preceded
by the prefix all (comp) store information of the whole group (components) of DRT ,
which has up to nC clusters. The mathematical entities denoting these variables come just
below in the boxes, where the encircling braces stand for a collection of arrays.

Figure 3: Fragment of computational data structure associated to a DRT .

Centralities are metrics used in graph and network theory to classify nodes and highlight
special roles played by them in relation to the whole set. Here, two centrality measures
are computed for each node belonging to the graphs G1 and G2 corresponding to the
clusters C1 and C2, namely the closeness centrality and the degree centrality associated
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to a node v ∈ Gj , j = 1, 2 [7] which are defined, respectively, as γ(v) = 1/
∑|v|

i=1 d(v, vi)
and δ(v) = deg(v), where |v| is the number of nodes, d(v, vi) the shortest path distance
between v and vi, and deg(v) the degree of v which accounts for the number of edges that
are connected to v. In fact, the summation above is defined as the farness property, whose
reciprocal is γ. All the calculation for the individual graphs was carried on a 2.4 GHz Intel
Core i5/8Gb-RAM laptop within a few minutes. Figure 4 depicts the centrality spot of
γ and δ plotted over the nodes of Gj , j = 1, 2 as a 3D distribution through which highly
concentrated regions in the γ spot as opposed to more scattered ones in the δ spot are
noticed.
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Figure 4: 3D distribution of γ and δ for the clusters C1 and C2.

In this paper, both degree and closeness centralities are assumed to establish criteria for
the selection of perforation zones. While the former property describes how tightly a given
facies, in the sense of a node of the graph, connects to other rocks of similar features that
surround it, the latter property suggests the spatial location whence all the connectivity
veins of a rock formation would be wetted by a flowing oil if a source was placed there.
Table 1 summarizes the centrality data computed for the clusters C1 and C2. The fourth
column sorts a pair of values which correspond to the maximum and minimum closeness
centrality γ respectively, followed by the two values of degree centrality δ associated to
these two extrema. In turn, the last column points out the cell coordinates of the respective
locations inside Ω

′
.

Table 1: Centrality data for selection of perforation zones.

DRT cluster centrality pair values cells

13

C1 γ 0.0858, 0.0222
(47,67,13), (32,73,25)

C1 δ 17, 2
C2 γ 0.0378, 0.0160

(37,67,62), (46,54,85)
C2 δ 9, 1

4 Numerical Simulations of Oil Recovery

To single out the validity of our approach, oil recovery factor (ORF) simulations were
done and production curves were obtained from perforation zones placed exactly at the
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cells whose equivalent nodes (for j = 1, 2) in the graphs Gj corresponded to the following
sets: i) Wj , ii) max(γ)j , and iii) min(γ)j . The cells in the first set are those found at
different depths of the well W whose coordinates are easily found. Yet the cells in the
second and third sets are those listed in Table 1, for which we decided to take the one of
minimum closeness value as a benchmark to be compared against that one of maximum
closeness value in the hope of exhibiting some considerable difference. The simulations

Figure 5: ORF curves in a prospect of 20 years at different perforation zones for DRT = 13.

considered a time range of 20 years and were performed by using the CMG R© software
running on a 4-node 3.20 GHz Intel Core i5/12 Gb-RAM desktop computer, whereof the
respective results follow plotted in Figure 5 (solid lines for C1; dashed lines for C2).

We see in the plot that the ORF curves associated to the perforation zones of W1 and
W2 dominate over the other curves of the same cluster when reaching maximum rates of
about 10.36% and 8.12%, respectively. Besides, W2 overcomes W1 individually, possibly
due to the amount of cells that form these perforation zones (#W2 = 11; #W1 = 6).
As expected, the ORF curves associated to max(γ)j and min(γ)j evidence remarkable
enhancement concerning the recovery performance with time (C2: ORF ≈ 3.07 % and
≈ 2.20 %; C1: ORF ≈ 6.5% and ≈ 1.11%). Surely, such results require deeper analyses
regarding their practical advantage. Despite of that, the approach introduced here reveals
that the maximum closeness cell may be a candidate to choose a good perforation zone at
a given HFU.

So far, only γ was invoked to interpret the results. However, when observing the δ
values associated to each cell, we can infer that the supposed perforation zones’ local
neighbourhoods seem to affect the results by enhancing the ORF value. In fact, each of
the δ values associated to the max(γ)j cells are much higher than those associated to the
min(γ)j cells for both clusters. This fact may indicate that their high values have some
relation to the maximization of the recovery rate at those locations and suggests that
the centralities may yield a set of additional parameters to be verified for the selection of
promising HFUs.
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5 Conclusions

In this paper, techniques applied to the characterization of oil reservoirs were presented
with focus on computational and numerical sights. The influence of the connectivity of a
rock formation in a synthetic reservoir was investigated by using computational strategies.
We argued that the estimation of metrics, mainly the centrality measurements exposed here,
may be relevant features to be observed in the study of reservoir characterization when
combining graph theory and discrete rock typing, which together with the connectivity,
may improve the identification of optimal HFUs. Although the results presented here are
quite promising, additional studies are still required to ascertain how significant is the
rock connectivity in the process of determining perforation zones accurately. Likewise, the
influence of other variables, such as geologic formation, oil/gas/water mixture composition,
rate of water saturation should be included in future models.
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