Trabalho apresentado no CNMAC, Gramado - RS, 2016.

# Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

## A Samambaia de Barnsley

Fabio A. Dorini<sup>1</sup> Departamento Acadêmico de Matemática, UTFPR, Curitiba, PR Leyza B. Dorini<sup>2</sup> Departamento Acadêmico de Informática, UTFPR, Curitiba, PR Júlio C. S. Schwingel<sup>3</sup> Departamento de Matemática, Colégio Estadual Prof. Nilo Brandão, Curitiba, PR

**Resumo**. Este trabalho objetiva apresentar as ideias matemáticas principais da Samambaia de Barnsley, um fractal que recria uma imagem que assemelha-se a uma folha de samambaia da variedade *Black Spleenwort* e tem como base quatro transformações afins elementares.

Palavras-chave. Samambaia de Barnsley, Fractais, Matlab.

### 1 Introdução

Fractais aproximados (ou pseudo-fractais) apresentam uma estrutura auto-similar ao longo de uma extensa, porém finita, faixa de escalas de observação. Este é o caso das samambaias, cujos folíolos são semelhantes, mas não idênticos, à folha como um todo. Neste contexto, fractais podem ser considerados representações abstratas de estruturas reais presentes na natureza [2,3].

Este trabalho objetiva, através de uma matemática que pode ser assimilada por estudantes e professores do Ensino Médio, compreender as ideias principais do fractal denominado *Samambaia de Barnsley*. Além disso, são explorados os principais pontos de sua implementação computacional tomando-se como base os sistemas de funções iteradas, os quais geram figuras fractais através da repetição em escala de uma mesma figura [1].

### 2 A Samambaia de Barnsley

Na construção da Samambaia de Barnsley por meio de um sistema de funções iteradas, um ponto do plano é repetidamente transformado por meio de quatro transformações afins, denotadas aqui por  $T_1$ ,  $T_2$ ,  $T_3$  e  $T_4$ . Elas possuem diferentes probabilidades de ocorrência

<sup>&</sup>lt;sup>1</sup>fabio.dorini@gmail.com

<sup>&</sup>lt;sup>2</sup>leyza@dainf.ct.utfpr.edu.br

<sup>&</sup>lt;sup>3</sup>julioschwingel@gmail.com [aluno do Profmat/UTFPR/Curitiba - bolsista CAPES]

em cada etapa do processo e são definidas por:

$$T_k : \mathbf{R}^2 \to \mathbf{R}^2$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto A_k \begin{pmatrix} x \\ y \end{pmatrix} + b_k,$$
(1)

em que

$$A_{1} = \begin{pmatrix} 0.85 & 0.04 \\ -0.04 & 0.85 \end{pmatrix}, \ b_{1} = \begin{pmatrix} 0 \\ 1.6 \end{pmatrix}, \ A_{2} = \begin{pmatrix} 0.2 & -0.26 \\ 0.23 & 0.22 \end{pmatrix}, \ b_{2} = \begin{pmatrix} 0 \\ 1.6 \end{pmatrix}, A_{3} = \begin{pmatrix} -0.15 & 0.28 \\ 0.26 & 0.24 \end{pmatrix}, \ b_{3} = \begin{pmatrix} 0 \\ 0.44 \end{pmatrix}, \ A_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 0.16 \end{pmatrix}, \ e \ b_{4} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

As probabilidades de ocorrência das transformações  $T_1$ ,  $T_2$ ,  $T_3$  e  $T_4$  no processo iterativo de geração da Samambaia de Barnsley são  $p_1 = 85\%$ ,  $p_2 = 7\%$ ,  $p_3 = 7\%$  e  $p_4 = 1\%$ , respectivamente.

Em outras palavras, o algoritmo proposto por Barnsley [1] pode ser definido da seguinte maneira: (a) a cada uma das transformações afins  $T_k$  é atribuída uma probabilidade de aplicação  $p_k$ ,  $k \in \{1, 2, 3, 4\}$ ; (b) escolhe-se um ponto inicial  $x_0 \in \mathbb{R}^2$  qualquer; (c) aplica-se as transformações  $T_k$  de forma aleatória, de acordo com sua probabilidade de ocorrência. Isto é, dado  $x_0 \in \mathbb{R}^2$ ,  $n \in \mathbb{N}$ ,  $n \ge 1$ , e  $k \in \{1, 2, 3, 4\}$ ,

$$x_{n+1} = T(x_n), \quad \text{Prob}\{T = T_k\} = p_k,$$
(2)

em que  $\operatorname{Prob}\{T = T_k\}$  representa a probabilidade de T assumir a transformação afim  $T_k$  (na iteração em questão). O código seguinte (em Matlab, adaptado de [4]) fornece uma aproximação da Samambaia de Barnsley.

```
shg; clf reset; set(gcf,'color','white')
   x = [0.5; 0.5]; hold on; plot(x(1),x(2),'.','markersize',1,'color','k');
2
   p = [.85 .92 .99 1.00];
                             .85]; b1 = [0; 1.6];
.22]; b2 = [0; 1.6];
   A1 = [ .85 .04; -.04 
 A2 = [ .20 -.26; .23 ]
                       .23
5
   A3 = [-.15] A4 = [0]
                .28;
                        .26
                             .24]; b3 = [0; .44];
6
                   0;
                          0
                              .16];
7
   for k=1:70000
8
9
        r = rand;
        if r < p(1)
10
             x = A1*x + b1; plot(x(1),x(2),'.','markersize',1,'color','g')
11
12
        elseif r < p(2)
            x = A2*x + b2; plot(x(1),x(2),'.','markersize',1,'color','g')
13
14
        elseif r < p(3)
            x = A3 * x + b3; plot(x(1),x(2),'.', 'markersize',1, 'color', 'g')
15
16
        else
                              plot(x(1),x(2),'.','markersize',1,'color','g')
             x = A4 * x;
17
        end
18
19
   end
   axis([-3 3 -0.5 10.5]);
20
```

Resultados teóricos mais avançados (fora do escopo deste trabalho) garantem que, independentemente do  $x_0$  escolhido, a partir de um certo  $N \in \mathbb{N}$  suficientemente grande os pontos da sequência  $(x_n)_{n\geq N}$  definidos em (2) estão próximos do conjunto denominado Samambaia de Barnsley [1,2].

A Fig. 1(a) ilustra a saída da implementação acima para 70.000 iterações . A Fig 1(b) considera 10.000 iterações (trocar 70.000 por 10.000 na linha 8 do código), associando-se a cada ponto gerado uma cor correspondente à transformação utilizada: verde para  $T_1$ ; vermelho para  $T_2$  (trocar 'g' por 'r' na linha 13 do código); azul para  $T_3$  (trocar 'g' por 'b' na linha 15); e preto para  $T_4$  (trocar 'g' por 'k' na linha 17).



Percebe-se que os pontos gerados por  $T_1$  são responsáveis pela formação dos ramos cada vez menores (corpo e ponta da samambaia), os gerados por  $T_2$  formam o primeiro ramo esquerdo, os gerados por  $T_3$  formam o primeiro ramo direito, e os pontos gerados por  $T_4$  formam a haste da samambaia. O algoritmo proposto por Barnsley recria uma imagem que assemelha-se a uma folha de samambaia da variedade *Black Spleenwort* [2].

#### 3 Um pouco da matemática da Samambaia de Barnsley

As transformações em (1) são transformações afins,  $ie, T: \mathbb{R}^2 \to \mathbb{R}^2$ , da forma

$$T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} ax+by+e\\ cx+dy+f \end{pmatrix} = \begin{pmatrix} a & b\\ c & d \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} + \begin{pmatrix} e\\ f \end{pmatrix},$$
(3)

em que a, b, c, d, e, e f são números reais.

Rotações, contrações, dilatações, reflexões, translações, dentre outras, ou composições destas, são exemplos clássicos de transformações afins. Outra propriedade importante é que levam retas em retas e preservam razão entre segmentos no plano.

Não é difícil mostrar que toda transformação afim pode ser decomposta como segue:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} r\cos\theta & -s\sin\phi \\ r\sin\theta & s\cos\phi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix},$$
(4)

em que  $r \in s$  são fatores de contração/dilatação, e  $\theta \in \phi$  são ângulos de rotação da transformação T. O vetor  $(e, f)^t$  associa uma translação à T.

A Tabela 1 apresenta os valores particulares de  $r, s, \theta, \phi, e, e f$  associados às transformações  $T_1, T_2, T_3 \in T_4$  da definição da Samambaia de Barnsley em (1).

Tabela 1: Parâmetros das transformações afins utilizadas na Samambaia de Barnsley.

| Transformação | r    | $\theta$ (graus) | s    | $\phi$ (graus) | e | f    | p (probabilidade) |
|---------------|------|------------------|------|----------------|---|------|-------------------|
| $T_1$         | 0.85 | -2.5             | 0.85 | -2.5           | 0 | 1.6  | 0.85              |
| $T_2$         | 0.3  | 49               | 0.34 | 49             | 0 | 1.6  | 0.07              |
| $T_3$         | 0.3  | 120              | 0.37 | -50            | 0 | 0.44 | 0.07              |
| $T_4$         | 0    | 0                | 0.16 | 0              | 0 | 0    | 0.01              |

Observe que as transformações afins  $T_1$ ,  $T_2$ ,  $T_3$  e  $T_4$  são em essência composições de rotações, contrações, reflexões e translações. De fato,  $T_1$  realiza uma rotação de 2.5° no sentido horário, seguida de contração com fator 0.85 e translação vertical de  $b_1 = (0, 1.6)^t$ ;  $T_2$  realiza uma rotação de 49° no sentido antihorário seguida de contração com fator 0.3 na direção do eixo x, e rotação de 49° no sentido antihorário seguida de contração com fator 0.3 na direção do eixo x, e rotação de 49° no sentido antihorário seguido de contração com fator 0.34 na direção y. Finalmente, uma translação vertical de  $b_2 = (0, 1.6)^t$ ;  $T_3$  realiza uma rotação de 120° no sentido antihorário seguido de contração com fator 0.3 na direção x, e rotação de 50° no sentido horário seguido de contração com fator 0.37 em y. Uma translação vertical de  $b_2 = (0, 0.44)^t$  é finalmente aplicada. Fica evidente uma componente reflexiva em  $T_3$ ; e  $T_4$  realiza uma projeção sobre o eixo y, seguido de uma contração com fator 0.16.

**Proposição 3.1.** Considere o conjunto  $\Omega = \{||Ax||_2/||x||_2, x \in \mathbb{R}^2, x \neq 0\} \subset [0, +\infty),$ em que  $A = (a_{ij})$  é uma matriz  $2 \times 2$  de números reais. Então,  $\Omega$  possui máximo.

Demonstração. De fato,

$$\Omega = \left\{ ||Ax||_2/||x||_2, \ x \in \mathbb{R}^2, \ x \neq 0 \right\} = \left\{ ||A(x/||x||_2)||_2, \ x \in \mathbb{R}^2, \ x \neq 0 \right\} = \\
= \left\{ ||Ay||_2, \ y \in \mathbb{R}^2, \ ||y||_2 = 1 \right\} = \left\{ ||A(\cos\theta, \sin\theta)^t||_2, \ \theta \in [0, 2\pi] \right\} = \\
= \left\{ \sqrt{(a_{11}\cos\theta + a_{12}\sin\theta)^2 + (a_{21}\cos\theta + a_{22}\sin\theta)^2}, \ \theta \in [0, 2\pi] \right\}.$$
(5)

Como a função  $f: [0, 2\pi] \to \mathbb{R}$  definida por

$$f(\theta) = \sqrt{(a_{11}\cos\theta + a_{12}\sin\theta)^2 + (a_{21}\cos\theta + a_{22}\sin\theta)^2}$$
(6)

é contínua (pois é composição de funções elementares contínuas), segue do Teorema de Weierstrass que f assume valor máximo em algum ponto do intervalo  $[0, 2\pi]$ . Deste modo, existe  $\tilde{\theta}$  em  $[0, 2\pi]$  tal que  $f(\tilde{\theta}) = \max \Omega$ .

Da Prop. 3.1 segue que se A é uma matriz  $2 \times 2$  de números reais, então existem uma constante real K > 0 e  $\tilde{x} \in \mathbb{R}^2$  tais que  $||Ax||_2 \leq K||x||_2$  e  $||A\tilde{x}||_2 = K||\tilde{x}||_2$ , para todo  $x \neq 0 \text{ em } \mathbb{R}^2$ . Assim, para as tranformações  $T_1, T_2, T_3 \in T_4 \text{ em } (1)$  é possível afirmar que

$$||T_k(x) - T_k(y)||_2 = ||(A_k x + b_k) - (A_k y + b_k)||_2 = ||A_k(x - y)||_2 \le K_k ||x - y||_2, \quad (7)$$

em que  $K_k, k \in \{1, 2, 3, 4\}$ , é a constante dada pela referida proposição, isto é,

$$K_{k} = \max\left\{\sqrt{\left(a_{11}^{k}\cos\theta + a_{12}^{k}\sin\theta\right)^{2} + \left(a_{21}^{k}\cos\theta + a_{22}^{k}\sin\theta\right)^{2}}; \ 0 \le \theta \le 2\pi\right\}, \quad (8)$$

em que  $A_k = (a_{ij}^k)$ . Com o auxílio do software Matlab, cujo script é o que segue,

$$A = [0.85 \ 0.04; \ -0.04 \ 0.85];$$

**—** ( )

 $K = \max(\operatorname{sqrt}((A(1,1)*\cos(t)+A(1,2)*\sin(t)).^{2}+(A(2,1)*\cos(t)+A(2,2)*\sin(t)).^{2}));$ 

obteve-se os seguintes valores aproximados para as constantes (de contração),  $K_k$ :

$$K_1 \approx 0.851, \ K_2 \approx 0.341, \ K_3 \approx 0.380, \ e \ K_4 \approx 0.160.$$
 (9)

Portanto, como cada transformação afim em (1) é uma contração, esta terá um único ponto atrator, isto é, independentemente do  $x_0$  escolhido este será atraído por um dos quatro atratores definidos pelas transformações  $T_1$ ,  $T_2$ ,  $T_3$  e  $T_4$ . De fato, para cada  $T_k$ ,  $k \in \{1, 2, 3, 4\}$  fixo, e denotando como  $I_2$  a matriz identidade de ordem 2, é verdade que

$$x_{1}^{k} = T_{k}(x_{0}) = A_{k}x_{0} + b_{k},$$

$$x_{2}^{k} = T_{k}(x_{1}^{k}) = A_{k}(A_{k}x_{0} + b_{k}) + b_{k} = A_{k}^{2}x_{0} + [A_{k} + I_{2}]b_{k},$$

$$x_{3}^{k} = T_{k}(x_{2}^{k}) = A_{k}(A_{k}^{2}x_{0} + [A_{k} + I]b_{k}) + b_{k} = A_{k}^{3}x_{0} + [A_{k}^{2} + A_{k} + I_{2}]b_{k},$$

$$\vdots$$

$$x_{n}^{k} = T_{k}(x_{n-1}^{k}) = A_{k}^{n}x_{0} + [A_{k}^{n-1} + A_{k}^{n-2} + \dots + A_{k}^{2} + A_{k} + I_{2}]b_{k}.$$
(10)

Fazendo  $S_n^k = A_k^{n-1} + A_k^{n-2} + \dots + A_k^2 + A_k + I_2$ , segue que

$$A_k S_n^k = S_n^k A_k = A_k^n + A_k^{n-1} + \dots + A_k^3 + A_k^2 + A_k.$$
(11)

Assim,

$$S_n^k (I_2 - A_k) = S_n^k - A_k S_n^k = I_2 - A_k^n.$$
(12)

Já que os determinates det  $(I_2 - A_1) \approx 0.02$ , det  $(I_2 - A_2) \approx 0.68$ , det  $(I_2 - A_3) \approx$  $0.80 \,\mathrm{e}\,\det(I_2 - A_4) \approx 0.84$  são ambos não nulos, segue que as matrizes  $(I_2 - A_k), k \in$  $\{1, 2, 3, 4\}$ , são inversíveis. Portanto,  $x_n^k$  em (10) pode ser apresentada como

$$x_n^k = T_k^n(x_0) = A_k^n x_0 + (I_2 - A_k^n) (I_2 - A_k)^{-1} b_k, \quad k \in \{1, 2, 3, 4\}.$$
 (13)

Usando o fato que  $A_k, k \in \{1, 2, 3, 4\}$ , é uma matriz de contração com fator  $K_k$ , segue que, para todo  $x \in \mathbb{R}^2$  fixo,

$$0 \le ||A_k^n x||_2 = ||A_k A_k^{n-1} x||_2 \le K_k ||A_k^{n-1} x||_2 = K_k ||A_k A_k^{n-2} x||_2 \le K_k^2 ||A_k^{n-2} x||_2 \le \dots \le K_k^{n-1} ||A_k x||_2 \le K_k^n ||x||_2.$$
(14)

Como  $0 \le K_k < 1$  e  $x \in \mathbb{R}^2$  é fixo, segue que  $K_k^n ||x||_2$  vai para zero quando n tende ao infinito. Do *Teorema do Confronto* segue, então, que

$$\lim_{n \to \infty} ||A_k^n x||_2 = 0, \tag{15}$$

para todo  $x \in \mathbb{R}^2$  fixo. Em particular, as escolhas  $x = (1,0)^t$  e  $x = (0,1)^t$  em (15) nos permitem concluir que

$$\lim_{n \to \infty} A_k^n = 0 \quad \text{(matriz nula)}. \tag{16}$$

Usando (16) em (13) implica que

$$\lim_{n \to \infty} x_n^k = \lim_{n \to \infty} \left[ A_k^n x_0 + (I_2 - A_k^n) (I_2 - A_k)^{-1} b_k \right] = (I_2 - A_k)^{-1} b_k.$$
(17)

Os limites em (17), atratores de  $T_k$ ,  $k \in \{1, 2, 3, 4\}$ , são dados por

$$\lim_{n \to \infty} x_n^1 = (I_2 - A_1)^{-1} b_1 \approx \begin{pmatrix} 2.655\\ 9.958 \end{pmatrix}, \qquad \lim_{n \to \infty} x_n^2 = (I_2 - A_2)^{-1} b_2 \approx \begin{pmatrix} -0.608\\ 1.872 \end{pmatrix}$$
$$\lim_{n \to \infty} x_n^3 = (I_2 - A_3)^{-1} b_3 \approx \begin{pmatrix} 0.154\\ 0.631 \end{pmatrix}, \qquad \lim_{n \to \infty} x_n^4 = (I_2 - A_4)^{-1} b_4 \approx \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$
(18)

A sequência  $(x_n^k)_{n \in \mathbb{N}}$  em (10) é chamada *órbita* do referido atrator. A Fig. 2(a) ilustra os quatros atratores (quadrados pretos) das transformações  $T_k$ ,  $k \in \{1, 2, 3, 4\}$ . Observe que os pontos gerados por  $T_1$  são atraídos para a região da ponta da samambaia,  $T_2$  e  $T_3$  atraem para as regiões no entorno dos caules das primeiras folhas (vermelho e azul, respectivamente), e  $T_4$  atrai para a haste da samambaia.



Figura 2: Ilustração de pontos característicos importantes da Samambaia de Barnsley

Um fato importante é que uma transformação afim T é totalmente determinada pela imagem de três pontos não colineares  $Q_1$ ,  $Q_2 \in Q_3$  do plano. De fato, fazendo  $Q_i = (x_i, y_i)$ ,

 $T(Q_i) = (\bar{x}_i, \bar{y}_i), i \in \{1, 2, 3\}$ , os parâmetros  $a, b, c, d, e \in f \in (3)$  são as soluções dos sistemas de equações lineares seguintes:

$$\begin{cases} x_1a + y_1b + e = \bar{x}_1, \\ x_2a + y_2b + e = \bar{x}_2, \\ x_3a + y_3b + e = \bar{x}_3, \end{cases} e \begin{cases} x_1c + y_1d + f = \bar{y}_1, \\ x_2c + y_2d + f = \bar{y}_2, \\ x_3c + y_3d + f = \bar{y}_3. \end{cases}$$
(19)

Estes sistemas de equações admitem solução única se, e somente se,

$$\det \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix} \neq 0, \quad \text{ou} \quad \det \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 - x_1 & y_2 - y_1 & 0 \\ x_3 - x_1 & y_3 - y_1 & 0 \end{pmatrix} \neq 0, \quad (20)$$

já que o determinante não muda se uma linha é subtraída de outra, ou  $(x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1) \neq 0$ , isto é,  $Q_1$ ,  $Q_2$  e  $Q_3$  são não colineares.

Este resultado é fundamental para a obtenção das transformações afins  $T_k$  em (1):

- (a)  $T_1$  leva a samambaia toda na parte verde, Fig. 2(b), conduzindo a ponta da samambaia nela mesma e as pontas das folhas vermelha e azul nas pontas das folhas verdes da esquerda e direita mais próximas, respectivamente. Isto é,  $T_1(P_f) = P_f$ ,  $T_1(P_5) = P_3$ e  $T_1(P_4) = P_8$ .
- (b)  $T_2$  leva a samambaia toda na sua folha vermelha, Fig. 2(b), conduzindo  $P_f$  em  $P_5$ ,  $P_0$  em  $P_2$ , e  $P_4$  em  $P_7$ . Isto é,  $T_2(P_f) = P_5$ ,  $T_2(P_0) = P_2$  e  $T_2(P_4) = P_7$ .
- (c)  $T_3$  leva a samambaia toda na sua folha azul, Fig. 2(b), conduzindo  $P_f$  em  $P_4$ ,  $P_0$  em  $P_1$ , e  $P_4$  em  $P_6$ . Isto é,  $T_3(P_f) = P_4$ ,  $T_3(P_0) = P_1$  e  $T_3(P_4) = P_6$ .
- (d)  $T_4$  leva a samambaia toda na região preta, caule da samambaia na Fig. 2(b), projetando todos os pontos da samambaia sobre o eixo y antes de aplicar uma contração. Isto é,  $T_4(x,y) = (0,\xi y), \xi \in \mathbb{R}$  fixo,  $(x,y) \in \mathbb{R}^2$ , e  $T_4(x_f,y_f) = (0,\xi y_2)$ , em que  $(x_f,y_f)$  e  $(x_2,y_2)$  são as coordenadas dos pontos  $P_f$  e  $P_2$ , respectivamente. A condição  $T_4(x_f,y_f) = (0,\xi y_2)$  conduz a um fator de contração de 0.16.

#### Referências

- M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. Lond. Ser. A, 399:243–275, 1985.
- [2] M. F. Barnsley. Fractals Everywhere. Academic Press, Inc., San Diego, CA, 1988.
- [3] B. B. Mandelbrot. Obtectos fractais: forma, acaso e dimensão. Gradiva Publicações, Lisboa, 1991.
- [4] C. Moler. *Experiments with MATLAB*. Electronic edition published by MathWorks, Inc., 2011. https://www.mathworks.com/moler/exm/book.pdf.