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Abstract. The contribution of this paper is the formulation of a new mathematical for-
mulation which brings a linear bi- objective function to reduce total number of container
movements and also improve container ship stability issues. Since each movement costs at
most, depending on port, US$200, then minimization of number of movements is related
with economic aspects. In addition, concerns about typical ship stability measures, like
metacentric height and angle list, has been considered in the proposed approach and help
to prevent ship capsize. The results attests the validity of proposed model and shows the
impact of each objective function in container ship arrangement through ports.
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1 Introduction

The container ship stowage planning problem consists in defining how the containers
will be organized inside a ship along ports. For such purpose, two container features
impacts on the number of movements necessary to unload and load a ship: container
position on ship and its port destination. Since the container ship has a regular structure,
containers are organized in stacks as described in Figure 1.

A container in the bottom of a stack could be unloaded only by removing all ones on
top of it. Although, removed containers which destination are forward ports should be
reloaded to container ship resulting on additional number of movements. In some cases,
it is possible to avoid this additional number of movements employing a better stowage
planning. Some articles in literature provide some discussion, mathematical models and
heuristics to minimize total number of movements [1, 2, 5].
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Figure 1: Container ship structure and spaces to store containers.

Another important issue is ship stability which can make the container ship to cap-
size and increase resistance through water [4]. These two problems could be avoided by
changing containers arrangement to increase the metacentric height (GM) and reduction
of angle list value (θ), as illustrated in Figure 2.

Figure 2: Metacentric (M), Geometric centre (G), and angle list (θ) for a container ship.

Some references addressed stability problems, but without presenting a proper math-
ematical model integrated with minimization of number of movements [6], or using an
non-linear terms to consider stability [2, 3].

This paper avoids the problem of using non-linear objective function for ship stabil-
ity and proposes a model which tackles ship stability through a linear objective function.
Thus, the contribution of this paper is to the first time present a bi-objective linear integer
model to minimize the total number of movements and maximize stability measures. Ad-
ditionally, some results about impact on container ship arrangement when stability issues
are incorporated validates the mathematical model are presented.

2 Mathematical Model

The following assumptions have been made for the sake of simplicity, without compro-
mising the solution general application:
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1. The container ship has a rectangular format and is represented by a matrix with
rows (r = 1, 2, · · · , R), columns (c = 1, 2, · · · , C) and bays (d = 1, 2, · · · , D) with
maximum capacity of R × C ×D containers. An irregular format may be achieved
by simply adding constraints which represent imaginary containers that occupy the
same spaces during the whole voyage [5].

2. All containers have the same size and weight.

3. The ship starts to be loaded in port 1, where it arrives empty;

4. The ship visits ports 2, 3, · · · , N such that the container ship will be empty in the
last port, because the ship performs a circular route where port N , in fact, represents
port 1.

5. In each port i = 1, 2, · · · , N, the container ship can be loaded with containers whose
destination are ports i+ 1, · · · , N .

6. The container ship can always carry all the containers available in each port and
this will never exceed its capacity.

The mathematical model in terms of linear programming with binary variables for the
3D SP is given by (1)-(8).

min f (xijv(r, c, d), yi(r, c, d)) = αφ1 (xijv(r, c, d)) + βφ2 (yi(r, c, d)) (1)

subject to
j
∑

v=i+1

R
∑

r=1

C
∑

c=1

D
∑

d=1

xijv(r, c, d)−
i−1
∑

k=1

R
∑

r=1

C
∑

c=1

D
∑

d=1

xkij(r, c, d) = Tij

i = 1 : N − 1; j = i+ 1 : N (2)

i
∑

k=1

N
∑

j=i+1

j
∑

v=i+1

xkjv(r, c, d) = yi(r, c, d)

i = 1 : N − 1; r = 1 : R; c = 1 : C; d = 1 : D (3)

yi(r, c, d)− yi(r + 1, c, d) ≥ 0

i = 1 : N − 1; r = 1 : R; c = 1 : C; d = 1 : D (4)
j−1
∑

i=1

N
∑

p=j

xipj(r, c, d) +

j−1
∑

i=1

N
∑

p=j+1

p
∑

v=j+1

xipv(r + 1, c, d) ≤ 1

j = 2 : N ; r = 1 : R− 1; c = 1 : C; d = 1 : D (5)

xijv(r, c, d) = 0 or 1

i, j, v = 1 : N ; r = 1 : R; c = 1 : C; d = 1 : D. (6)

where the binary variable xijv(r, c, d) is defined as follows: if, in port i, the compart-
ment (r, c, d) has a container whose destination is port j and this container was moved
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in port v, then the variable assumes value 1; otherwise value 0 is assumed. The term
compartment (r, c, d) represents row r, column c for the container ship bay d. Similarly,
variable yi(r, c, d) is defined as follows: if, in port i, the compartment (r, c, d) has a con-
tainer; then the variable assumes value 1; otherwise value 0 is assumed. The objective
function (1) is composed of two terms: the first is the total cost of moving a container
and, the second is the sum of instability measures for the container ship configuration in
each port. It is assumed that, for all ports, the container movement costs the same and
is equal to one. Constraints (2) express the total number of containers that will shipped
from port i to port j. Constraints (3) require that each compartment (r, c, d) of the con-
tainer ship is always occupied by at most one container. Constraints (4) are related to
the physical storage of the containers in the ship, and it imposes that, for each container
in row r+1, there be another container in the row r for all r = 1, · · · , R− 1. Constraints
(5) define how a container can be unloaded from the ship in port j by requiring that, if
a container occupies the position (r, c, d) at port j, and it will be unloaded, then, there
are no containers above or the containers above have already been unloaded at previous
ports. Finally, Constraints (6) could be modified to be constant and equal to −1 for some
position (r, c, d) at any port i in order to represent a container ship with irregular bays.
A more detailed discussion about mathematical model assumptions could be find in [2].

The two terms which compose the objective function (Eq. (1)) define two optimization
criteria: the first term is a function of the number of containers moved, φ1(x), and the
second depends on how the container ship is organized in each port, φ2(y). The two criteria
are combined by values given by weights α and β in a manner that forms a bi-objective
optimization framework.

The term φ1(xijv(r, c, d)) assumes that for all ports, the container movement cost is
the same and is equal to one which may be translated as Eq. (7).

φ1(xijv(r, c, d)) =
N−1
∑

i=1

N
∑

j=i+1

j−1
∑

v=i+1

R
∑

r=1

C
∑

c=1

D
∑

d=1

xijv(r, c, d) (7)

The term φ2(yi(r, c, d)) refers to the container ship´s transverse stability and assumes
that every container has the same mass and is equal to one. This term is to control
the container ship transverse stability before leave the port which means after all loading
movements had been performed as described by Eq. (8).

φ2(yi(r, c, d)) =
N
∑

i=1

(−∆GMi +∆Li) (8)
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Table 1: Transportation information for a five port example.
P2 P3 P4 P5

P1 2 5 0 0
P2 0 2 3 1
P3 0 0 2 2
P4 0 0 0 1

where:

∆GMi =

(

R
∑

r=1

(

D
∑

d=1

C
∑

c=1

yi(r, c, d)

)

· (GYship − r + 0.5)

)

,

∆Li = hpi + hni,
(

C
∑

c=1

(

D
∑

d=1

R
∑

r=1

yi(r, c, d) · (GXship − c+ 0.5)

))

= hpi − hni,

hpi, hni ≥ 0

where the values GYship and GXship represent vertical and horizontal coordinates of
gravity center of the ship, respectively. The variables ∆GMi represent the variance in
metacentric height GM in each port i after loading all containers. Since GM is the
distance between the centre of gravity of a ship and its metacentre, as much metacentric
height is increased with a ∆GMi > 0, it turns more difficult the ship to overturn. The
variables ∆Li also helps with the reduction of angle of list after loading all containers.
Angle list measures the vessel leaning to either port or starboard. More discussion about
metacentric height increasing and reduction of angle of list and corresponding objective
functions could be seen at [4, 6].

In addition to conditions (a)-(f), the number of containers that must be loaded at a
certain port is given by a transportation matrix T of dimension (N − 1)× (N − 1), whose
element Tij represents the number of containers from port i that must be transported to
the destination port j. This matrix is an upper triangular matrix, since Tij = 0 for every
i ≥ j.

3 Results

The mathematical model has been applied in a small example just to illustrate how
container ship arrangement could be affected by stability measures and the proposed model
had been successful to provide more stable ship arrangements through ports.

The numerical example consists on a container ship with dimensions R = 4, C = 4
and D = 1. The number of ports is N = 5, and in each port there are K = 2 quay cranes
available for unloading and loading operations. It was also considered, for simplicity,
each column as bay. Each element Ti,j from transportation matrix gives the number of
containers that should be loaded in port i which destination is port j. The transportation
matrix used in this example is shown in Table 1.
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Table 2: Number of unloading and loading movements per port.
Port 1 2 3 4 5 Total

loading 7 6 4 1 0 18
unloading 0 2 7 5 4 18

The mathematical model had been solved using GUSEK (the GLPK Integer Optimizer
v4.55 with all cuts enabled) and the corresponding model has 176 constraints, and 400
binary variables. The integer solution had been found in 0.4 seconds. When the model
is set to minimize only the total number of container movements (α = 1 and β = 0),
the resulting container ship arrangement is given in Figure 3. A different container ship
arrangement is produced for only stability measures maximization (α = 0 and β = 1) as
shown in Figure 4. Each square in both figures has a pair of numbers (i, j) representing
a space of the ship occupied by a container, or 0 representing an empty space. The first
number of the pair gives the container loading port information and the second gives
the container unloading port information. The number of movements per port for both
solutions is presented in Table 2 which leads to a total cost of US$7200. The article [2]
provides a detailed procedure on how to compute stability measure.

Figure 3: The container ship arrangement for minimization of φ1(·).

Figure 4 shows a more stable container ship arrangement specially in ports 2 and 3
when compared with the arrangement in Figure 3, but without an additional number of
container movements.

4 Conclusions

This paper presented a new mathematical model that minimizes total number of con-
tainer movements in a ship and also is able to address stability issues using just a linear
objective function. A small numerical test had been performed and showed that the model
is promising since it could give more stable container ship arrangements without additional
container movements. Future works consist in test non-regular ship arrangement and ships
with a larger capacity, like real ones could reach, with 18, 000 containers.
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Figure 4: The container ship arrangement for minimization of φ2(·).
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