Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Existência e Regularidade de Soluções em Problemas Variacionais

Caroline de Arruda Signorini¹ Valeriano Antunes de Oliveira²

Instituto de Biociências, Letras e Ciências Exatas, UNESP - Univ. Estatual Paulista, Câmpus de São José do Rio Preto, Departamento de Matemática Aplicada.

1 Introdução

Desde seu início até a virada do século XX, a teoria de Cálculo das Variações carecia de um componente decisivo: não havia teoremas de existência. Estes constituem um ingrediente essencial do método dedutivo para resolver problemas de otimização, abordagem a qual combina existência, condições necessárias rigorosas e exame de candidatos para chegar a uma solução. Vamos apresentar resultados da teoria de existência em Cálculo das Variações que estendem o contexto do problema básico para funções absolutamente contínuas definidas num intervalo [a,b], as quais constituem o espaço AC[a,b], em vez de estudar os espaços clássicos $C^2[a,b]$ ou Lip [a,b]. Aos elementos de AC[a,b] denominaremos arcos.

2 Resultados

Neste trabalho, trataremos o seguinte problema

$$\min J(x) = \int_{a}^{b} \Lambda(t, x(t), x'(t)) dt : x \in AC[a, b], x(a) = A, x(b) = B,$$
 (1)

onde $\Lambda:[a,b]\times\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ é a Lagrangiana e $A,B\in\mathbb{R}^n$ são dados.

Definição 2.1. Um arco x é admissível para o Problema (1) se satisfaz as condições de contorno e se J(x) é bem definido e finito. Um arco admissível x_* é dito ser uma solução ou um minimizador se $J(x_*) \leq J(x)$ para quaisquer outros arcos admissíveis x.

Definição 2.2. Um arco admissível x_* é um minimizador local fraco se, para algum $\varepsilon > 0$, tem-se $J(x_*) \leqslant J(x)$ para todos arcos admissíveis x satisfazendo $\|x - x_*\|_{AC} \leqslant \varepsilon$ e $\|x' - x'_*\|_{L^{\infty}} \leqslant \varepsilon$. E um arco admissível x_* é um mínimo local forte se existe $\varepsilon > 0$ tal que $J(x_*) \leqslant J(x)$ para todo arco admissível x que satisfaz $\|x - x_*\| \leqslant \varepsilon$.

¹carolineasignorini@gmail.com

²antunes@ibilce.unesp.br

2

Teorema 2.1. (Tonelli, 1915) Se a Lagrangiana $\Lambda(t, x, v)$ é contínua, convexa em v e coerciva de grau r > 1, isto é, para certas constantes $\alpha > 0$ e β , tem-se $\Lambda(t, x, v) \ge \alpha |v|^r + \beta$ para todo $(t, x, v) \in [a, b] \times \mathbb{R}^n \times \mathbb{R}^n$, então o Problema (1) admite uma solução em AC[a, b]. (Ver [1], Teorema 16.2, p. 321.)

Teorema 2.2. (Tonelli-Morrey) Suponha que Λ admita gradientes Λ_x e Λ_v , os quais são contínuos em (t,x,v), assim como o é Λ . Se, para todo conjunto limitado $S \subset \mathbb{R}^n$, existem uma constante c e uma função integrável $d: [a,b] \to \mathbb{R}^n$ tais que, para todo $(t,x,v) \in [a,b] \times S \times \mathbb{R}^n$, tem-se $|\Lambda_x(t,x,v)| + |\Lambda_v(t,x,v)| \leq c(|v| + |\Lambda(t,x,v)|) + d(t)$, então qualquer mínimo local fraco x_* satisfaz a equação de Euler na forma integral:

$$\Lambda_v\left(t, x_*(t), x_*'(t)\right) = c + \int_a^t \Lambda_x\left(s, x_*(s), x_*'(s)\right) ds \ \ q.t.p. \ \ em \ \ [a, b].$$

(Ver [1], Teorema 16.13, p. 327 e Teorema 15.2, p. 308.)

Definição 2.3. Dizemos que Λ tem crescimento de Nagumo ao longo de x_* se existe uma função $\theta: \mathbb{R}_+ \longrightarrow \mathbb{R}$ satisfazendo $\lim_{\alpha \to \infty} \frac{\theta(\alpha)}{\alpha} = +\infty$ e tal que, para $t \in [a,b]$ e $v \in \mathbb{R}^n$, tem-se $\Lambda(t, x_*(t), v) \geqslant \theta(|v|)$.

Corolário 2.1. Sob as hipóteses do Teorema 2.2, se $\Lambda(t, x, v)$ é convexa em v e tem crescimento de Nagumo ao longo de x_* , então x_* é Lipschitz.

Teorema 2.3. (Clarke-Vinter) Seja $x_* \in AC[a,b]$ um mínimo local forte para o Problema (1), onde a Lagrangiana é contínua, autônoma, convexa em v e possui crescimento de Nagumo ao longo de x_* . Então x_* é Lipschitz.

(Ver [1], Teorema 16.18, p. 330.)

As demonstrações dos resultados acima podem ser encontradas em [1].

3 Conclusões

Este trabalho nos mostra que estender a classe de funções candidatas à solução do problema básico para o conjunto das funções absolutamente contínuas foi um grande passo para que se pudesse desenvolver a teoria de existência em Cálculo das Variações. Com este estudo, vimos também que exigindo condições de crescimento sobre a Lagrangiana pode-se obter resultados de regularidade de soluções.

Agradecimentos

Este trabalho contou com o apoio do processo 2014/24271-6, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Referências

[1] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. Springer-Verlag, Graduate Texts in Mathematics, London, 2013.