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Abstract. This work presents an analytical characterization of the parametric dependence
of variables of resistive circuits by few data samples. Cramer’s solution of a linear system
is alternatively formulated here as a rational function of polynomials of the parameters
under study. Coefficients for these polynomials are calculated from few measures of system
variables and known parameters. Discontinuities induced by measurement noises are fixed
by regularization methods. Results are shown for both circuit simulations and experimental
measurements. Ongoing work includes the application of the proposed approach in the
synthesis of systems.
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1 Introduction

Understanding the behavior of systems implies full knowledge of relationships between
all its inputs and outputs. In mathematical modeling the aim is to describe within a
certain level of detail the structure and interaction of variables and parameters in a sys-
tem [5]. Identification techniques are used to approximate under a priori knowledge (e.g.
the structure of the model) system parameters, being cumbersome for complex processes
that are subjected to changes. A recent approach based on a reduced set of measurements
have been proposed in [1] to estimate the relationship between system outputs and para-
metric rational functions by a linear approximation. This approach has been applied to
obtain models of alternating current (AC) and direct current (DC) circuits [7], mechanical

1karolline.t@gmail.com
2ralzatec@uis.edu.co. R. Alzate is also a Postdoctoral Fellow at the Departamento de Engenharia

Elétrica e de Computação, Universidade de São Paulo, São Carlos, Brazil.
3vilma@sc.usp.br
4bhatt@ece.tamu.edu

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

Trabalho apresentado no CNMAC, Gramado - RS, 2016.

DOI: 10.5540/03.2017.005.01.0396 010396-1 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0396


2

systems [6] and to design linear controllers [1]. In general terms, this approach can be
classified as an inverse problem as it tries to find the rule (i.e. the system) producing the
existing data [4]. There are strong ill-conditioning problems associated to inverse problems
reported in the literature [3,4,8], which reduces the success of the problem of finding sta-
ble solutions under real noisy data. This paper applies the so-called measurement-based
method for characterizing the parametric dependence of variables of a resistive circuit,
showing practical aspects that should be taking into account in order to get accurate
solutions under real experimental data.

2 Mathematical preliminaries

Let us start by considering a rational function of the form

y = f(p) =
β0 + β1p

α0 + α1p
(1)

where p ∈ R is a parameter varied in a given interval and {βi, αi}, i = {0, 1} are unknown
real constant weights. Then, a re-arrangement of (1) produces

α0y(k) + α1p(k)y(k) = β0 + β1p(k),∀k ∈ Z (2)

with p(k) sampled values of p and y(k) the corresponding outputs. In order to determine
the unknown coefficients βi and αi, a system of equations can be constructed from (2).
Given the rational form of (1), the linear system

GΦ = 0 (3)

where

G =









y(1) p(1)y(1) −1 −p(1)
y(2) p(2)y(2) −1 −p(2)
y(3) p(3)y(3) −1 −p(3)
y(4) p(4)y(4) −1 −p(4)









, Φ =









α0

α1

β0
β1









has nontrivial solutions and therefore, there must be a rank deficiency in matrix G. Ac-
tually, rank(G) = 3 and then the null-space of G has 1 vector. This introduces one-degree
of freedom to the linear system (3) such that by selecting, for instance, a value for α0 it
can be alternatively represented by

Mz = v (4)

with

M =





p(1)y(1) −1 −p(1)
p(2)y(2) −1 −p(2)
p(3)y(3) −1 −p(3)



 , z =





α1

β0
β1



 , v = α0





−y(1)
−y(2)
−y(3)





Solvability of (4) depends on the non-singularity of matrix M. Then, for full-rank M

a unique non-trivial solution z is related with a non-null α0. The well-posedness of the
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system plays also an important role in the correctness of solutions, specially under noisy
measurements. A problem is called well-posed in the sense of Hadamard [4] if there exists
a unique solution which depends continuously on the data and parameters. Otherwise,
we are facing an ill-posed problem which should be treated with regularization tools [8]
in order to reduce the influence of noise on the calculations. Roughly speaking, regular-
izing an ill-posed problem consists in modifying its original formulation in such a way
that approximate solutions can be constructed, converging continuously to the original
(unperturbed) one [8]. There are many regularization methods reported in the literature,
fitted to almost any kind of application problem. A basic approach was proposed by A.
N. Tikhonov [4] in order to approximate the solution z of the original, unperturbed, linear
system (4), stated in terms of the following minimization problem

zλ = arg min

{

∥

∥

∥
M̃z̃− ṽ

∥

∥

∥

2

+ λ ‖z̃‖2
}

(5)

where zλ is the approximated solution, z̃ is noisy and λ is the regularization parameter [4].
The L-curve and other related methods for selection of λ can be found in [2] and references
therein. The interested reader is referred to [8] for a deeper study on regularization
methods and selection of regularization parameters.

3 A circuit output described by a rational function

The schematic diagram for a linear resistive circuit with only independent sources is
shown in Fig. 1.

V1 V2

R1

R2

R3

R4

R5 R6 R7

R8

R9 R10

y1 y2

i1
i2

i3

i4
i5

Figure 1: Resistive circuit for analysis of the measurement-based parametric predictions.

Using the Kirchhoff’s voltage law (KVL), the output voltages can be described in the
matrix form

Ax = b1V1 + b2V2 (6)
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where

A =















R1 +R2 +R5 −R2 0 −R5 0 0 0
−R2 R2 +R3 +R6 −R3 −R6 0 0 0
0 −R3 R3 +R4 +R7 0 −R7 0 0

−R5 −R6 0 R5 +R6 +R8 +R9 −R9 0 0
0 0 −R7 −R9 R7 +R9 +R10 0 0

−R2 R2 0 0 0 1 0
0 0 −R4 0 0 0 1















x =





















x1
x2
x3
x4
x5
x6
x7





















=





















i1
i2
i3
i4
i5
y1
y2





















b1 =





















1
0
0
0
0
0
0





















b2 =





















0
−1
1
0
0
0
0





















with Rj , j = 1, 2, ...10 and Vℓ, ℓ = 1, 2, known values. Then, it is possible to solve (6) for
any xn of x by applying the Cramer’s rule as follows

xn =
|T1,n|V1 + |T2,n|V2

|A|
=

|T1,n|

|A|
V1 +

|T2,n|

|A|
V2 (7)

with |Tℓ,n| denoting the determinant of A after replacing its n-th column by bℓ. Solution
xn in (7) can be alternatively computed using a recent approach proposed in [1] to estimate
the relationship between variables and parameters in linear systems, based on measurement
data. In particular, this approach states that under the assumption of rank m for a matrix
with respect to a given parameter, the determinant of this matrix can be represented by
an equivalent polynomial of order m with respect to that parameter [1]. The solution xn
can be easily shown to be [1]

xn (p) =
β1(p)

α1(p)
V1 +

β2(p)

α2(p)
V2 (8)

where the unknown coefficients for the polynomials

βℓ(p) = β0ℓ + pβ1ℓ

αℓ(p) = α0ℓ + pα1ℓ

with ℓ = 1, 2, can be determined after proper selection of samples for the pair (xn, p) and
by assuming some normalization base, as shown previously in Section 2.

4 Parametric analysis

Simulations in OrCADr and real measurements in laboratory were conducted in the
circuit of Fig. 1 with the components given in Table 1. To illustrate the experimental
setup, Fig. 2 depicts a black box scheme configured to find the input-output relationship
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under variations of R10. The voltage y1 is described as a monotonic function of the
resistance R10. Also, the analytical predictions of the parametric function (8) for n = 6
and p = R10, are obtained and the coefficients calculated from experimental data as
presented in Table 2.

�
�

Unknown system

y1

R10

V1 V2

Figure 2: Experimental setup for analysis of one-parameter parametric dependence, show-
ing the parameter varied, system inputs and output.

Table 1: Voltages and resistances used for circuit analysis.

V1 V2 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

18V 15V 1kΩ 4.7kΩ 3.9kΩ 5.6kΩ 6.8kΩ 5kΩ 4.7kΩ 5.6kΩ 2.2kΩ ∈ [1kΩ, 10kΩ]

The negative signs of coefficients α11 and α12 (see Table 2) create a discontinuity in
the prediction as depicted in Fig. 3(a). This particular situation shows the ill-posedness
of system (4) under measurement data. Results for the rational function after regulariza-
tion using Tikhonov’s and Maximum entropy (for comparison purposes) algorithms are
presented in Figs. 3(b)-(c), recovering the smoothness of the predicted values of y1 under
variation of R10. The regularization algorithms employed here were run in MATLAB and
are described in [3]. The regularization parameters were selected by analyzing the regu-
larization error shown in Fig. 3(d). Then, for the Tikhonov’s regularization the best λ

was found to be close to 0.7 and for the maximum entropy case it was found to be close to
10. Here it is important to remark that the value of λ is a compromise between sensitivity
and precision of the solution. As can be seen, the smaller error in the prediction over a
wider range of parameter values is obtained under Thikhonov’s regulation. Nevertheless,
there is also a remarkable drift for R10 < 3kΩ that can be explained by the effort needed
to correct the original discontinuity around this value. The maximum entropy approach
shows a good fit for lower values but bad predictions for higher values in the parameter
range. This suggests a further study on dependence of predictions with respect to the
sample set selected to evaluate (4). The coefficients calculated after Tikhonov’s regular-
ization are included in Table 2, noticing that the regularization removes discontinuities by
preserving the positive sign of the denominator coefficients in (8).
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(a) Original data set
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(b) Tikhonov’s regularization
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(c) Maximum entropy regularization
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Figure 3: (a)-(c): Parametric dependence of y1 with respect to variations in R10 obtained
by simulations in OrCADr (solid line) and by real measurements (dotted line) for both
cases of original and regularized data sets. (d) Regularization error vs. λ: Tikhonov
(dotted), Maximum entropy (solid).

Table 2: Coefficients of the one-parameter analytical function assuming α0ℓ = 1, ℓ = 1, 2.
Non-regularized Regularized

Coefficients Value Coefficients Value

α11 -0.200×10−3 α11 0.316×10−3

β01 0.3004 β01 0.296
β11 -0.595×10−4 β11 0.989×10−4

α12 -0.100×10−2 α12 0.114×10−2

β02 0.1693 β02 0.1646
β12 -0.169×10−3 β12 0.195×10−3

5 Discussion and conclusion

Parametric dependence of output variables in a resistive circuit has been studied by a
rational function of polynomials of the parameter under study. The analytical expression
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has been evaluated after calculation of the coefficients, based on a few set of measurements
of the output variables for known parameter values. This avoids the necessity of having a
priori information about the structure of the system in order to obtain a valid input (pa-
rameter) to output (variable of interest) relationship. Regularization of data was necessary
to avoid discontinuities in predictions induced by measurement noises. Results presented
here can be extended to analyze simultaneous variation of two and more parameters. The
simplicity of the calculations involved in the method and the use of few measurements
shows the potential application of the measurement-based approach to perform analysis
of systems.
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