
Proceeding Series of the Brazilian Society of Computational and Applied

Mathematics

Brazilian Campaign Financial Network in 2014 Elections:

Topological Properties

André Manhães Machado1
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Abstract. General elections were held in Brazil on 5 October 2014 to elect the President
of Republic, the Senators, the State Governors and State Legislatures, amounting to 1603
positions to be filled in by more than 18.000 running candidates. In order to meet this
competition, candidates receive private financial contribution to make campaign among
their electorate. Based on this, electoral justice requires candidates to provide a detailed
accounting of revenue which is available to public just after elections is over. Using these
reports, we model a new social network, until now unexplored, which represents the financial
relation between the participants involved in Brazilian campaign of 2014 elections. Analyzing
the structure of the network, we show that the major component, which represents more
than 96% of nodes and edges within the original network, has a small-world behavior and it
can be classified as a scale-free network, two well-studied network models found in different
areas of social networks.
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1 Introduction

Social Network Analysis (SNA) consists of a set of techniques used for investigating
social structures with the purpose of studying the exchange of resources or the interac-
tions among actors within a complex network. Complex networks are networks whose
structure is irregular, complex and dynamically evolving in time. A complex network can
be modeled as a graph with non-trivial topological features where a set of nodes, repre-
senting individuals or organizations, are joined together by links indicating interaction [1].
Usually, these networks have thousands or millions of nodes.

We point out three non-trivial topological features (graph properties) commonly used
to categorize the topological structure of a complex network: (a) the average shortest
path length L, computed as the average over all shortest paths lengths in the network;
(b) the clustering coefficient C, which indicates the trend of nodes to form groups in the
graph and (c) the degree distribution, which gives the probability of having a node with
a positive integer number of k links [1].
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Complex networks typically have highly heterogeneous degree distributions with long
tails. This topological feature motivates a major concern in network analysis focused in
identifying the most central or relevant nodes in the system [2].

Many real systems are modeled as complex networks. Social networks, the Internet,
food webs, metabolic and protein networks, scientific collaboration networks and epidemi-
ological networks are some examples widely explored in the literature [3].

Last Brazilian general elections provided around 1600 positions to be filled in by more
than 18.000 running candidates. In order to meet this competition, these candidates
receive private financial contribution to make campaign among their electorate. All this
data is publicly available in the web. As far as we know, a social network modeling the
financing relations in the Brazilian electoral process is not yet investigated in the scientific
literature.

In this paper, we propose to model the Brazilian Campaign Financing Network (hence-
forth designated as BCFN) of 2014 elections as a complex network. Using the information
provided by the Superior Electoral Court (TSE), the BCFN graph is defined to represent
the existence of monetary relations (graph edges) between the participants (graph nodes)
involved in Brazilian electoral campaign financing. The BCFN graph is disconnected, but
the major connected component represents more than 96% of the whole network.

This paper is organized as follows. The next section, describes the Brazilian electoral
process main aspects and proposes a model for BCFN network. Section 3 studies the
topological properties of the network. The results and conclusions are reported in the
Section 4.

2 Dataset and Graph Definition

The 2014 Brazilian elections simultaneously appointed the president of the Republic
(1 seat), one-third of senators (27 out of 81 seats), all members of the chamber of deputies
(513 seats), all state governors (27 seats) and legislators (1035 seats), summing up to 1603
seats.

In the elections process, candidates for legislative office were required to submit a
report with the registry of campaign contributions to their State’s Electoral Court (TRE
in Portuguese), which were subsequently sent to the Superior Electoral Court (TSE in
Portuguese). These reports, available in [4], provide detailed information on every declared
financial contribution to candidates campaigns, including the name of the contributor,
the recipient, the contributions type, as well as the total amount and the date of the
contribution. Parties and candidates may create committees and directories with the goal
to rise funds to one or more candidates, in order to organize the providing accounting as
defined in law.

The political contributions to candidates come from several sources: a) individuals
(which are not running for public offices); b) corporations; c) other political candidates;
d) committees, parties and directories (henceforth designed as PCDs). Moreover, political
candidates can make donations to committees and directories, which in turn can donate
to candidates and between them. Corporations can also make donations to committees
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and directories. In other words, all participants in the electoral process can be recipi-
ent/contributor, except individuals and business persons.

Using the reports available in [4], we propose in this paper the BCFN network modeled
as a graph G = (V,E), where the set of nodes V consists of any contributor or recipient
who appears receiving or giving any type of monetary good in 2014 Brazilian elections.
This includes all candidates, individuals, corporations, parties, committees and directories;
and the set of edges E, where an edge {v, w} ∈ E if v ∈ V is receiving or donating any
kind of contribution from/to w ∈ V .

3 Topological Properties

The research on complex networks is concerned with the effort of defining new concepts
and measures to characterize the topology of real networks. In last decades, the major
outcome has been the identification of principles and statistical properties common to
most of the real networks studied. Initially, the most basic property considered, for further
analysis of topological structure, is the distribution of connected components in the graph
[5].

A graph connected component is defined as a maximal connected subgraph. A sub-
graph is connected when all of its nodes are linked to one other through paths: all vertices
in a connected subgraph can reach one other through at least on path, but they have no
connection outside the component. A subgraph is maximal if is impossible to add any
new node or edge without invalidating the property of connectedness [6].

The number of connected components of a graph, including their size and quantity, is
taken as an indication of the opportunities and obstacles to communication or the transfer
of resources within the network. Thus, the analysis of components is a mandatory step of
structural description of a network [6].

The graph topology is also an important way to understand the efficiency, robustness
or reliability of a network. In order to comprehend the structure or relation between
individuals within the network, the commonly studied topological features are the cluster-
ing coefficient, the degree distribution of nodes and the average shortest path length [7],
concepts that are briefly explained in the following.

First introduced by Watts and Strogatz [8], the clustering coefficient C measures the
probability that two connected nodes v1 ∈ V and v2 ∈ V are connected to a common
third node w ∈ V in the graph G = (V,E). Let hv be the number of neighbors of v, tv be
the number of triangles observed for v and hv(hv − 1)/2 be the total number of possible
triangles for v. Hence, the clustering coefficient C(v) for node v ∈ V is defined as ratio
between the actual number of triangles of v and the maximum possible number of triangles
for v:

C(v) =
2tv

hv(hv − 1)
(1)

The clustering coefficient C of the whole network G = (V,E) is defined as the mean
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of all clustering coefficient C(v), ∀v ∈ V :

C =
1

|V |

∑

v∈V

C(v) (2)

where |V | is the number of nodes in the network.

The characteristic path length L or the average shortest path length L of a graph
G = (V,E) is defined as the path length between two nodes, averaged over all pairs of
nodes [9]. L is a metric of how well connected a graph is and one of the most important
parameters to measure the overall routing efficiency and functional integration of complex
networks [9]. L is defined as:

L =
1

|V |(|V | − 1)

∑

v,w∈V

d(v, w) (3)

where d(v, w) is the distance between v and w, i.e., the length of the shortest path between
v ∈ V and w ∈ V .

Real-life networks usually have a power-law degree distribution, that is, the node
degree distribution follows the function P (k) ∝ k−σ, where k is the degree and σ is the
power-exponent. Networks with power-law degree distribution are designated as scale-free
networks and many networks in nature, ecology, economy and technology have been found
to be scale-free [10].

These three properties are used to classify the network topology into three categories:
scale-free networks, small-world and random networks [11]. Random networks have small
shortest paths L and low clustering coefficient C. Small-worlds are networks with a large
clustering coefficient C and small average distance L. Scale-free networks appear in the
context of dynamic networks in which new nodes connect preferentially to highly connected
nodes in the network, producing a degree distribution which follows as power-law function
[12].

4 Results and Discussion

Table 1 shows the properties of Brazilian Campaign Finance Network (BCFN) of 2014
elections. The column Properties shows topological properties and distribution of partic-
ipants in each network. The column BCFNM refers to the major component of BCFN
graph. The column BCFNS designates the set of components of BCFN , excluding the
major component BCFNM . The columns Rm and Rs indicate, respectively, the ratio of
each property of BCFNM and BCFNS relative to BCFN graph. The BCFN graph
consists of 1232 different connected components. The major component (BCFNM ) repre-
sents more than 96% of the set of nodes V and more than 97% of the set of edges E in the
original graph. The remaining nodes and edges are distributed among the 1231 smaller
components (grouped as the set BCFNS). Since the connected component BCFNM has
most of nodes and edges of BCFN and each small component has around 5.9 nodes on
average, for further analysis, we characterize only the topological properties of BCFNM .
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Table 1: A comparison between the major componentBCFNM and the graph of small components

BCFNS .

Property BCFNM BCFNS Rm Rs

Components 1 1231 0.08% 99.92%

|V | 180601 7264 96.1% 3.9%

|E| 241509 6889 97.2% 2.8%

Candidates 17609 1538 92.0% 8.0%

Corporations 16326 397 97.6% 2.4%

Individuals 146037 5297 96.5% 3.5%

PCD 628 32 95.1% 4.9%

For the aim of classifying BCFNM network, the metrics L and C of BCFNM , denoted
from now on by LM and CM , can be compared to a random graph with the same number
of nodes |V | and the same number of edges |E|. Let Grand = (Vrand, Erand) be a random
network with average degree µ and |Vrand| ≫ µ. The average shortest-path length Lrand

is roughly estimated as [13]:

Lrand ≈
ln(|Vrand|)

ln(µ)
(4)

whereas for |Vrand| ≫ µ the clustering coefficient for random network approaches the value
of [13]:

Crand ≈
µ

|Vrand|
. (5)

where average degree µ is defined as:

µ =
2|E|

|Vrand|
(6)

Using this method, the Table 2 shows a comparison between the major component
BCFNM and a random network Grand with the same size. The column Property refers
to the topological properties, the column BCFNM designates the major component of
BCFN and Grand(Vrand, Erand) refers to random graph. When compared to a random
network, the major component BCFNM shows a smaller average path length LM and a
higher clustering coefficient CM . In fact, the clustering coefficient CM of BCFNM is much
greater than that clustering coefficient Crand of a random network, CM ≫ Crand. As the
average path length is low and and the clustering coefficient is high compared to a random
network, we can conclude that the BCFNM has a structure of small-world. Given that
the BCFNM network has candidates from distinct political spectrum (far left to far right
parties), the small-world behavior indicates the candidates within BCFNM are close in
terms of campaign finance (average of 5.66 hops between any of the participants), which
is unusual when we consider the differences between the proposed political projects of
candidates. A possible explanation for that behavior in small-worlds is the presence of
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hubs within the network, which are nodes with a great number of others nodes connected
to them. The presence of hubs can be inferred through the analyses of degree distribution.

Table 2: Comparison between the component BCFNM and a random network Grand(V,E).

Property BCFNM Grand(Vrand, Erand)

|V | 180601 180601

|E| 241509 241509

µ 2.67 2.67

C 1.75× 10−2 1.48× 10−5

L 5.66 12.30

Figure 1 shows the degree distribution of component BCFNM . The red line corre-
sponds to the fitted curve P (k) ≈ 4.7 × 104k−2.117 with R2 = 0.9608. We can observe
that the power-exponent σ is 2.117 which lies within the interval 2 and 3, typically found
in real-life networks [14]. In addition, a long tail showed in the plot, confirms a charac-
teristic of degree distribution. This indicates the presence of hubs (nodes) with degrees
much higher than most nodes within the network, which is also a common property of
small-world networks. Moreover, the network has a great number of terminal nodes (with
unitary degree). These two facts indicate that the BCFNM network has a great num-
ber of participants (terminal nodes) taking little part or marginal involvement in political
campaign finance, while others, in far fewer number, are taking huge engagement in the
electoral process (hub nodes).
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Figure 1: Degree distribution P (k) of component BCFNM .

We conclude that network modeled after the participants taking part in financial cam-
paign in Brazilian elections of 2014 is a graph with a big component, which contains more
than 96% of participants within this network. Moreover, we show that the major com-
ponent has a behavior of small-world and scale-free network, indicating the presence of
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a huge number of participants connected to a few players and a great proximity between
the different participants in the elections.
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[1] K. Klemm and V. M. Egúıluz. Growing scale-free networks with small-world behavior.
Physical Review E, 65(5), may 2002.

[2] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
pages 35–41, 1977.

[3] S. Wasserman and K. Faust. Social network analysis: Methods and applications,
volume 8. Cambridge university press, 1994.

[4] Superior Electoral Court. Estat́ısticas eleitorais - eleições 2014. Available in
http://www.tse.jus.br/eleicoes/estatisticas/estatisticas-eleitorais-2014, 2014. Ac-
cessed: 2015-02-07.

[5] B. Kang, K.I. Goh, D.S. Lee, and D. Kim. Complex networks: structure and dynam-
ics. Sae Mulli, 48(2):115–141, 2004.

[6] John P. Scott and Peter J. Carrington. The SAGE Handbook of Social Network

Analysis. Sage Publications Ltd., 2011.

[7] R. Pastor-Satorras, A. Vázquez, and A. Vespignani. Dynamical and correlation prop-
erties of the internet. Physical review letters, 87(25), nov 2001.

[8] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440–442, 1998.

[9] M. Rubinov and O. Sporns. Complex network measures of brain connectivity: Uses
and interpretations. NeuroImage, 52(3):1059–1069, Sep 2010.

[10] E. Ravasz and A. L. Barabási. Hierarchical organization in complex networks. Physical
Review E, 67(2), feb 2003.

[11] A. E. Motter, A. P. S. de Moura, Y. C. Lai, and P. Dasgupta. Topology of the
conceptual network of language. Physical Review E, 65(6), jun 2002.

[12] A. Barabási. Emergence of scaling in random networks. Science, 286(5439):509–512,
oct 1999.

[13] A. P. S. de Moura, Y. C. Lai, and A. E. Motter. Signatures of small-world and
scale-free properties in large computer programs. Physical Review E, 68(1), jul 2003.

[14] T. Zhou, G. Yan, and B.H. Wang. Maximal planar networks with large clustering
coefficient and power-law degree distribution. Physical Review E, 71(4), Apr 2005.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0398 010398-7 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0398

