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Abstract. This paper provides analytical solutions to one, two and three-dimensional
convection-diffusion equation with decay term, subjected to a time dependent and periodic
boundary condition. These solutions are suitable benchmarks to asses the correctness of
computational codes implemented for the problems of multidimensional reactive flows, which
are of considerable interest to many fields of science and engineering. Tests are illustrated
through computational codes and is remarked the feature of representing periodic oscillations
in all dimensions considered.
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1 Introduction

Classical solutions of the Convection-Diffusion Equation (CDE), with or without the
reaction term, have been catalogued for many initial and boundary conditions. Among
them, it can be found in the works by van Genuchten and Alves [6], Logan and Zlotnik [4],
Logan [3], Goltz and Dorroh [2], Ziskind et al. [7], Chen and Liu [1] and Pérez Guerrero
et al [5], analytical solutions pertaining to time varying boundary conditions, which is of
practical interest to many fields as hydrogeology, pollution dispersion and process industry.

However, it must be remarked that, in general, these works restrict their analysis to
one-dimensional domain, while real cases demand 2D and 3D calculations. Multidimen-
sional codes are then constructed in order to perform such calculations but their validation
would require comparison with suitable benchmark solutions.

Although it is possible to approach validation by extracting 1D results from numerically
calculated multidimensional profiles in order to compare them to preexisting analytical
solutions, we think that a plain validation would be only attained if multidimensional
solutions were available. So, in this paper, we seek these solutions for the linear equation:

∂c

∂t
= a0c+ a1~n.∇c+ a2.∇2c (1)
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which is a model equation for many physical problems. Typically, a0 is the reaction rate,
a1 is the negative of the fluid velocity, ~n is a unit vector tangent to the velocity direction,
and a2 is the composed diffusion coefficient, while c is the dependent function, representing
the chemical species concentrations.

In particular, we are interested in the validation of codes for the simulation of reacting
pollutant transport where the input at the inlet boundary is a continuous periodic function
of time, for example, in the case of liquid waste disposal operating on a periodic cycle, or
any natural cyclic water-quality variations [1, 3, 4], employing a generalization of one of
the 1D solutions proposed by Logan and Zlotnik [4].

2 Analytic Solution for the 1D Transient Problem

In the case of 1D problems, Eq.(1) reduces to:

∂c

∂t
= a0c+ a1

∂c

∂x
+ a2

∂2c

∂x2
(2)

subjected to c(x, t0)= g(x ). For t>t0, we have the following boundary conditions: c(0,t)=
f (t) and, at the outflow, we assume continuous concentration, forcing an homogeneous
Neumann exit, which is also referred to as Danckwerts condition in finite transport domains
[2, 5, 7].

Assuming that f (t) is time periodic and has a Fourier representation, we may consider
that Eq.(2) admits a solution of the form [3,4]:

c = eα̂x+β̂t (3)

where α̂ and β̂ are complex valued, thus α̂ = αR + iαI and β̂ = βR + iβI .
Then, substituting the above relations in Eq.(2), we obtain:

β̂ = a0 + a1α̂+ a2α̂
2 (4)

Following, we may conclude that any solution given by Eq.(3) satisfying Eq.(4) is a
solution of Eq.(2).

2.1 Periodic time and constant forcing

Taking the real and imaginary parts of Eq.(4) and considering that:

α̂2 = (αR + iαI)
2 =

(
α2
R − α2

I

)
+ i (2αRαI) (5)

we obtain the following relations:

βR = a0 + a1αR + a2
(
α2
R − α2

I

)
(6)

βI = a1αI + a2 (2αRαI) = αI (a1 + 2a2αR) (7)

Solutions that do not decay in time, but are forced at a fixed value of x by a time
periodic value, imply in βR = 0. Then, inserting that condition into Eq.(6), we have:
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a0 + a1αR + a2
(
α2
R − α2

I

)
= 0 and, therefore: αI = ±

√
α2
R +

a1
a2
αR +

a0
a2

(8)

which, after substitution in Eq.(7), implies in:

βI = ±
√
α2
R +

a1
a2
αR +

a0
a2

(a1 + 2a2αR) (9)

By noting that the concentration c cannot take negative values, in order to provide a
physically consistent solution, we need to add a constant forcing such that this nonnegative
restriction is satisfied. Also, for a constant in time forcing, we have βR = βI = 0 and,
therefore, substituting this condition in Eq.(4), we obtain:

α̂ = − a1
2a2
±

√
a21
4a22
− a0
a2

(10)

As expected, Eq.(2) has negative real solutions in case of a0 < 0, thus producing a
steady solution that decays in the x direction, representing the amplitude decay with the
distance. So, given a0, a1, a2, and an arbitrary αR, we may construct a solution employing
Eq.(3) and Eqs.(8) to (10).

2.2 Sample code test

Figure 1: 1D Sample Code Graphics Output.

We show a test (Fig. 1) where a simple 1D explicit finite difference (FD) code that
solves Eq.(2) is tested against the analytical solution given above. Entry parameters are:
L (computational domain size) = 10; ∆x = 0.2; ∆t = ∆x2/2; a0 = −0.01; a1 = −1.0;
a2 = 1.0 and αR is arbitrarily set as -0.1. The transient analytical and numerical solutions
are plotted on the upper graph and the absolute error (amplified by 10) is plotted below.
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3 Analytic Solutions for 2D and 3D Transient Problems

In the case of 2D and 3D problems, we may consider as ansatz, respectively:

c = eα̂xx+α̂yy+β̂t and c = eα̂xx+α̂yy+α̂zz+β̂t (11)

Once more, observing that α̂i and β̂ are complex valued, we have:

α̂x = αxR + iαxI , α̂y = αyR + iαyI , α̂z = αzR + iαzI and β̂ = βR + iβI (12)

By substituting these in each ansatz and in the correspondent forms of Eq.(1), we
obtain, for two dimensions:

β̂ = a0 + a1xα̂x + a1yα̂y + a2
(
α̂2
x + α̂2

y

)
(13)

and for three dimensions:

β̂ = a0 + a1xα̂x + a1yα̂y + a1zα̂z + a2
(
α̂2
x + α̂2

y + α̂2
z

)
(14)

In the same way as before, any solution given by Eq.(11), satisfying Eqs.(13) and (14)
are, for each case, solutions of Eq.(1).

3.1 Periodic and time constant forcing

Taking the real and imaginary parts of Eq.(14) and considering accordingly the relation
of Eq.(5), we obtain for the most generic case of three dimensions:

βR = a0 + a1xαxR + a1yαyR + a1zαzR + a2
(
α2
xR + α2

yR + α2
zR − α2

xI − α2
yI − α2

zI

)
(15)

and:
βI = a1xαxI + a1yαyI + a1zαzI + 2a2 (αxRαxI + αyRαyI + αzRαzI) (16)

We also consider periodicity in y and z directions, hence βR, αyR and αzR are set
to zero, in order to obtain bounded solutions, while αyI and αzI are both arbitrarily
prescribed constants, in order to properly represent oscillations in these coordinates.

So, inserting these conditions in Eq.(15), we have:

a0 + a1xαxR + a2
(
α2
xR − α2

xI − α2
yI − α2

zI

)
= 0 (17)

and:

axI = ±
√
α2
xR − α2

yI − α2
zI +

a1x
a2
αxR +

a0
a2

(18)

which, upon substitution in Eq.(16), yields:

βI = ±
√
α2
xR − α2

yI − α2
zI +

a1x
a2
αxR +

a0
a2

(a1x + 2a2αxR) + a1yαyI + a1zαzI (19)

and the solution can be expressed as:

c = e(αxR+iαxI)x+iαyIy+iαzIz+iβI t (20)
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Also, to assure the nonnegative restriction for the concentration profile, we must have
also βI = 0 and this supplies the constant forcing:

c0 = e(αxR+iαxI)x+iαyIy+iαzIz (21)

For the 2D case, we can proceed analogously, considering that there is not the z com-
ponent and, as a consequence, periodicity in the z direction. Thus, given a0, a1, a2 and
arbitraries αxR, αyI and αzI , according to the case, we may construct a 2D or 3D solution,
employing Eqs.(18) to (21).

3.2 Sample code test

Figure 2: 2D Sample Code Graphics Output (1250 elements mesh).

A 2D code employing a simple Galerkin formulation through finite elements method
(FEM) is employed for test and the outcome for a given elapsed time is shown by Fig. 2.
The entry parameters are L = 10; W = 5; ∆x = 0.4; ∆y = 0.4; ∆t = 0.1; a0 = −0.01;
a1x = −2.0; a1y = −0.2; a2 = 1.0; αxR and αyI are arbitrarily set as -0.1. The error is
evaluated through Root Mean Square Deviation (RMSD), which is also shown in Fig. 2,
or:

RMSD =

√∑m
i=1 (Ci − Cai )2

m
(22)

where Cai is the analytical solution at node i for a given total number of nodes m.

We further observe that for 2D, Eq.(21) assumes the form:

c0 = eα̂xx+iαyIy (23)

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0411 010411-5 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0411


6

where αyI is arbitrarily prescribed and:

α̂x = − a1
2a2
±

√√√√a21x
4a22
−

(
a0 + a1yiαyI − a2α2

yI

a2

)
(24)

4 Supplementary Remarks

In the absence of diffusion and reaction, a0 = a2 = 0. Considering that, with time
periodic forcing at x = 0, the boundary condition does not decay in time, βR = 0 and,
therefore, Eqs.(6) and (7) reduce to:

βR = αR = 0 and βI = a1αI (25)

and Eq.(8) reduces to the pure convection solution:

c = ei(αIx+a1αI t) (26)

The phase velocity v is then obtained by considering the movement of a constant phase
point:

αIx+ a1αIt = const. (27)

thus:
∂

∂t
(αIx+ a1αIt) = 0 and v =

dx

dt
= −a1 (28)

the phase velocity v is, therefore, the same as the convection velocity u.
In the case of nonzero diffusion and reaction, the phase velocity is given by:

αIx+ βIt = const. and v =
dx

dt
= −βI

αI
= − (a1 + 2a2αR) = u− 2DαR (29)

Considering that αR will be negative for a solution decaying in the x direction, and
a2 = D will be positive, the phase velocity in the case of nonzero diffusion will be increased,
representing the periodic concentration amplitude decrease due to larger spreading of the
solute mass, to solute convective transport, or to higher solute consumption, depending
on the case [1].

The frequency is:
f = 2πω = −2πβI (30)

and from Eqs.(28) and (29), we have that the wavelength of the travelling waves is:

λ =
v

f
=

1

2παI
(31)

It must also be highlighted that the periodicity of the solution not only depends on
the input temporal frequency, but also on the physical parameters a0 (reaction rate), a1

(convection velocity) and a2 (diffusion coefficient) [4], as pointed out by Eq.(4).
These remarks can easily be extended to 2D and 3D, following the same steps as above.
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5 Conclusion

Analytical solutions for the 1D, 2D and 3D CDE with reaction term, subjected to
time-periodic inlet boundary problem have been presented. These solutions are suitable
to be used as benchmark for codes validation as illustrated by the applications to a 1D
FD code and to a 2D FEM code.

Since the considered CDE is linear, these solutions can be combined to find solutions
for any arbitrary time, y and z periodic boundary conditions and, as a consequence, for
many cases of oscillatory behavior in the three considered dimensions, which do not seem
to have yet appeared in the literature.
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