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Abstract. The goal of this work is to model elastoplastic materials. More precisely, it
will be considered metals with von Mises criterion. For this model the successive linear
approximation method and the small plastic deformation theory will be considered. The
finite element method will be employed for numeric solution for each force increment.

Keywords. successive linear approximation, plasticity, von Mises, finite elements

1 Introduction

Large deformation is a subject of interest in the field of computational mechanics.
Most of this interest lies in nonlinear problems which can be divided in two types: material
nonlinearity and geometrical nonlinearity.

The computational methods more typically used, and that are very well documented,
are based on the theories of [7], [6] and [9]. These methods use Newton’s method to solve
the nonlinear system obtained after the discretization of the problem.

Incremental methods were proposed over the years to solve large deformation through
small deformations, like in [4] and [1]. In [2] was proposed a incremental method for elastic
material called successive linear approximation method. In [3] this method was extend to
the viscoelastic material case.

Despite apparent similarities between the successive linear approximation(SLA) method
with other incremental methods, SLA uses a formulation that considers the current state
of the body as the reference configuration, while the others are usually written in a La-
grangean formulation.

The objective of this work is to verify that the SLA method can be adapted to simulate
elastoplastic small deformation. To do so, we will use the classical theory of plasticity for
small deformation.
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2 Successive Linear Approximation

Boundary Value Problems (BVP), in general, are formulated in referential (Lagrangian)
or spacial (Eulerian) coordinates. Alternatively, the Successive Linear Approximation
Method (SLA) uses the relative-descriptional formulation. In this formulation, the BVP
are formulated in coordinates concerning the configuration of the current time.

In this method, the constitutive equations are calculated at each state, with the ref-
erence configuration updated for each time step. The new reference configuration is the
current configuration of the body. Assuming that in each time step occurs a small defor-
mation, the constitutive equations are linearized. In this way, the SLA method solves a
nonlinear problem by linear increments for each time step, i.e., a large deformation can
be calculated by increments of small deformations.

2.1 Updated reference configuration

Let B be an elastic body, with κ0 being the preferred reference configuration. Consider

x = χ(X, t), X ∈ κ0((B)) = B0 (1)

the deformation of the body B0 at time t. The Cauchy stress tensor is defined by the
constitutive equation

T (X, t) = Fκ0(F ) (2)

where F (X, t) is the gradient deformation and Fκ0(F ) is the constitutive function of the
elastic material. In general, this function is a nonlinear function of F .

Let κt be a deformed configuration at time t, Bt = κt(B). In this way, we can define
the gradient deformation with respect to the configuration κ0,

F (X, t) = ∇Xχ(X, t). (3)

Now, consider a time τ > t and κτ a deformed configuration in this time, Bτ = κτ (B).
In time τ , the deformation relative to κ0 is given by ξ = χ(X, τ). Therefore, it is possible
to define, respectively, in the current configuration, κt, the relative deformation and the
relative displacement from κt to κτ , using the function χτ : Bt → Bτ

χτ (x, τ) := χ(X, τ), x ∈ Bt (4)

ut(x, τ) := ξ − x = χτ (x, τ)− x, x ∈ Bt. (5)

Taking the gradient relative to x in both sides of equation (5), we have

Ht(x, τ) = Ft(x, τ)− I (6)

where Ht and Ft are called, respectively, relative displacement gradient and relative defor-
mation gradient. I is the identity tensor.

Now, calculating the gradient of equation (5) relative to X, we have

F (X, τ) = (I +Ht(x, τ))F (X, t). (7)
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The diagram below represents the whole situation so far:

X ∈ B0
F (t)

yy

F (τ)=(I+H)F (t)

%%
x ∈ Bt

Ft(τ)=I+H

ξ=x+ut(ξ,t)
// ξ ∈ Bτ

With these concepts established, it is possible to define a function ft(x, τ) over the
domain Bt ×R, at time τ concerning to the current configuration, as if this function were
seen in the instant τ from a observer attached to the body in its movement at the current
time t. This features what we call earlier relative-descriptional formulation.

2.2 Linearized constitutive equation

By the literature it is known that the Hooke’s Law don’t satisfies the principle of
material frame-indifference. Therefore it can only be regarded as a approximation for small
deformations. For large deformations we consider that Fκ0(F ) is a nonlinear functional in
relation to F .

Let τ = t + ∆t, where we assume that ∆t is small enough so that the displacement
gradient is small (H � 1), i.e., H(τ) = Ht(x, τ). With this, using equation (6) and
equation (7), we can conclude

F (τ)− F (t) = H(τ)F (t) Ft(τ) = I +H(τ) (8)

Now, using Taylor to linearize equation (2) relative to the current configuration κt, we
have:

T (τ) = T (t) +∇FFκ0(F (t))[F (τ)− F (t)] = T (t) + L(F (t))[H(τ)] (9)

where L(F (t)) is the fourth order elasticity tensor relative to the reference configuration
κt.

Since we have the Cauchy stress tensor, we can also define the first Piola-Kirchhoff
stress tensor, Tκt(τ), at time τ relative to the current configuration κt,

Tκt(τ) = T (t) + (trH)T (t)− T (t)HT + L(F )[H] + o(2) = T (t) + L(F, T )[H]. (10)

where L(F, T )[H] is the forth order elasticity tensor for the Piola-Kirchhoff stress tensor.

2.3 Numerical method for large deformation

It is possible to solve numerically large deformations problems using the same strategy
that the Euler’s method for differential equations do. Consider the discrete time axis
· · · < tn−1 < tn < tn+1 < · · · where tn+1 = tn + ∆t. Assume that ∆t is small enough.
Consider κtn is the body configuration at time tn and xn = χ(X, tn) ∈ Btn with X ∈ Bt0

Let F (xn, tn) and T (xn, tn) be, respectively, the gradient deformation and the Cauchy
stress relative to the preferred reference configuration κ0, assumed to be known. If in any
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way we calculate the relative displacement utn(xn, tn), it allows us the update the new
reference configuration, κtn+1 , relative to the next step by using

xn+1 = χ(X, tn+1) = xn + ut(xn, tn+1) (11)

while the deformation gradient and the Cauchy stress, relative to the preferred configura-
tion κ0 can be determined at instant tn+1 by

F (xn+1, tn+1) = (I +Htn(xn, tn+1))F (xn, tn) (12)

T (xn+1, tn+1) = T (xn, tn) + L(F (xn, tn))[Htn(xn, tn+1)] (13)

Therefore, after updating the boundary data and the eventual body forces acting on
the body, we repeat the cycle from the updated reference configuration κtn+1 . This process
is known as successive linear approximation.

2.4 Linearized boundary value problem

Let Ω = κt(B) ∈ R2 be the region occupied by the body at the current configuration
κt at time t. Let ∂Ω = Γ1

⋃
Γ2 be the boundary of the body and nκt be the exterior unit

normal to ∂Ω. Let the relative displacement vector from κt to κτ be u(τ) = ut(x, t+∆t) =
χ(X, τ)− χ(x, t) and the displacement gradient be, H(τ) = ∇xu(τ).

Consider a BVP of an elastic body in equilibrium without external body forces, at
time τ = t+ ∆t relative to the current configuration at time t given by

−divTκt(x, τ) = 0 in Ω
Tκt(x, τ)nκt = f in Γ1

u(x, τ) = g in Γ2

(14)

where f is the prescribed surface traction, g is the prescribed displacement surface and u
is the displacement vector from κt to κτ . In equation (14) Tκt is the Piola-Kirchhoff stress
tensor at time τ relative to configuration κt at present time t. Replacing equation (10) in
equation (14) the equilibrium equation becomes

−div(L(F, T )[H(τ)]) = div(T (t)) (15)

In this problem, the time t is supposed to be known, i.e., F (t) and T (t) are known.
Therefore, equation (15) is a linear partial differential equation in time τ , and the system
in equation (14) is a linearized BVP for the determination of the relative displacement
vector u(x, τ), as follows

−div(L(F, T )[∇xu(x, τ)]) = div(T (t)) in Ω
(L(F, T )[∇xu(x, τ)])nκ = f − T (t)nκ in Γ1

u(x, τ) = g in Γ2

(16)

The linearization that we made does not depend on the incremental loading, like
in other methods [4], [1]. At every time step, the idea is to formulate a BVP as in
equation (16) and superposing this small deformations in large deformation.
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3 Elastoplastic successive linear approximation

The successive linear approximation method is based on the fact that in each force
increment a small deformation occurs. The premise which we start is that in this in-
crement, if the plastic deformation takes place, the mathematical theory of plasticity for
small deformation is valid.

The mathematical theory of plasticity for small deformation is based on Hooke’s law,
therefore, for the model that we will adopt the forth order elastic tensor will be the same
that Hooke’s law uses, i.e.,

Lijkl = λδijδkl + µ(δikδjl + δilδjk) (17)

where λ and µ are the material parameters known as Lamé’s parameters.

In this work we are only concerned with metals, and thus the von Mises yield criterion
will be used. The relationship between stress and strain to describe material behavior
when this is made up of both elastic and plastic components that we use is the classical:

dT = Lepdε, Lep = L− a : L⊗ L : a

h′ + a : L : a
, a =

∂f

∂T
(18)

where dT and dε are, respectively, the increment representation of the stress and strain
tensors. Lep is the elastoplastic tensor of material properties. h′ is a hardening function
and f is the yielding function.

3.1 Application: Thick cylinder subjected to a gradually increasing in-
ternal pressure

This example was studied in [5], [8] and others. In this case the condition of plane strain
is assumed. The material properties are: E = 2.1×104dN/mm2, ν = 0.3, σy = 24dN/mm2

and h′ = 0. The finite element mesh used was composed by 120 linear elements of Q4

type. This mesh and the boundary condition are shown in Figure (1). The linear yield
function used is defined as

T = σy + h′dεp (19)

where T is the effective stress and dεp is the effective plastic strain.
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Figure 1: Mesh and boundary con-
ditions

Figure 2: Displacement of inner face × ap-
plied pressure.

Figure (2) compares the theoretical and numerical solution of the relation between the
increasing of the applied pressure with the displacement of the inner face. In Figure (3)
we present the results of the distribution of principal stress Tθ along the radial axis of the
vessel at various pressure values.

Figure 3: Principal stress distribution Tθ = T1+T2
2 +

√
( (T1−T2)

2

4 + T 2
12) at pressure values

P = 12dN/mm2 and P = 18dN/mm2.

In this simulation was used 180 steps of the SLA method with ∆P = 0.1. The results
are compared with the theoretical solutions shown in [5] and they agree with the reference.

4 Conclusion

In this work the SLA method for elastoplastic material was proposed. For the example
in small deformations the method had an excellent behavior. Therefore, results were
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satisfactory, showing that the elastoplastic SLA has a similar behavior with the articles
considered.

The advantages of using SLA methods are that there is no trouble in impose the
boundary conditions and update the material configuration. Another important topic is
that with SLA method we can solve the material nonlinearity with the theory of plasticity
for small deformations.

For the future works, will be interesting to implement large defomation of elastoplas-
tics material with this model. More yielding criteria for metals and for soils have to be
implemented to prove the strenght of this model.
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