Trabalho apresentado no CNMAC, Gramado - RS, 2016.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Aplicação da Metaheurística Simulated Annealing na Parametrização do Modelo Battery

Marcia de Fatima Brondani¹ Airam Teresa Zago Romcy Sausen² Paulo Sérgio Sausen³ Manuel Osório Binelo⁴

Departamento de Ciências Exatas e Engenharia, Programa de Pós-Graduação Stricto Sensu em Modelagem Matemática, Unijuí, Ijuí, RS

Resumo. Neste trabalho é apresentada uma aplicação da metaheurística Simulated Annealing (SA) na parametrização do modelo Battery, utilizado para a modelagem matemática do tempo de vida de baterias de Lítio Íon Polímero (Li-Po). A partir dos resultados obtidos, é possível verificar tanto a eficácia deste modelo em predizer o tempo de vida das baterias estudadas, quanto a eficiência do algoritmo SA proposto em estimar um de seus parâmetros empíricos.

Palavras-chave. Simulated Annealing, Parametrização, Modelo Battery, Tempo de Vida de Baterias, Modelagem Matemática

1 Introdução

A predição do tempo de vida de baterias é de extrema importância para o desenvolvimento de tecnologias ligadas a dispositivos móveis. Esta previsão pode ser feita por diferentes classes de modelos matemáticos, entre estas, a classe dos modelos elétricos. Entre os modelos elétricos, um modelo bastante versátil é o modelo Battery [8]. Uma questão importante para a aplicação deste modelo é sua parametrização. Para a obtenção dos seus parâmetros, diferentes abordagens podem ser adotadas, como pode ser visto em [3, 11], uma opção é o uso de metaheurísticas [2].

Dentre as metaheurísticas, o Simulated Annealing (SA) têm se destacado como técnica de otimização robusta e eficiente. Este método, proposto por [6], é inspirado no procedimento de [9] e fundamentado na analogia entre o recozimento de sólidos e o problema de resolução de problemas de otimização combinatória [5]. Uma característica importante deste método é que ele permite que soluções piores que a atual tenham também alguma chance de serem selecionadas, fazendo assim a exploração da vizinhança dos resultados,

¹brondani.marcia@gmail.com

 $^{^2}$ airam@unijui.edu.br

³sausen@unijui.edu.br

⁴manuel.binelo@unijui.edu.br

escapando de mínimos locais. Conforme a temperatura diminui, diminui também a probabilidade de uma solução pior ser selecionada, trazendo assim mais estabilidade ao método a medida que a busca vai progredindo.

O processo de recozimento de um metal consiste em aquecê-lo até uma alta temperatura, de maneira que o metal se torne um líquido e os átomos possam se mover de forma relativamente livre. Então, é realizada lentamente a diminuição da temperatura do metal e, a cada nova temperatura, os átomos começam a adotar posições mais estáveis. Na implementação do algoritmo SA, estes pequenos deslocamentos aleatórios sofridos pelos átomos são representados pela transição energética. Assim, tem-se duas condições: (i) quando a transição energética for menor ou igual a zero, a nova configuração cristalina é naturalmente aceita e a iteração reinicia deste ponto; (ii) quando a transição energética for maior que zero, o movimento de difusão só será aceito mediante uma condição probabilística [6,14].

Neste trabalho, é apresentada uma aplicação da metaheurística Simulated Annealing (SA) na parametrização do modelo Battery, utilizado para a modelagem matemática do tempo de vida de baterias de Lítio Íon Polímero (Li-Po). A implementação do algoritmo SA proposto é realizada na ferramenta computacional Matlab, assim como a implementação do modelo Battery. A validação do referido modelo é realizada a partir da comparação entre os tempos de vida simulados e os tempos de vida experimentais obtidos de uma plataforma de testes.

O restante deste artigo está organizado da seguinte forma. Na Seção 2 são apresentados o funcionamento básico da metaheurística SA, a descrição dos seus parâmetros, e também o algoritmo SA proposto para otimizar um parâmetro do modelo *Battery*. Na Seção 3 são apresentados os resultados das simulações realizadas com o modelo *Battery* parametrizado a partir da metaheurística SA. Na Seção 4 é apresentada a conclusão.

2 Materiais e Métodos

Nesta seção, inicialmente é apresentado o funcionamento básico da metaheurística SA, assim como é apresentada uma breve descrição dos seus parâmetros. Em seguida, é apresentada uma aplicação da metaheurística SA na estimação de um parâmetro do modelo *Battery*, que é utilizado na realização da modelagem matemática do tempo de vida de baterias de Li-Po.

2.1 Funcionamento do método Simulated Annealing

A metaheurísitica SA [6] consiste na minimização de uma função objetivo, através de saltos aleatórios, dentro de um espaço solução definido inicialmente [7]. O funcionamento básico do algoritmo SA consiste primeiramente em gerar, de forma aleatória ou heurística, uma solução inicial. Em seguida, o parâmetro temperatura inicial é inicializado e, a cada iteração do processo, é selecionado aleatoriamente uma amostra das soluções vizinhas da solução atual, as quais podem se tornar soluções atuais de busca. Então, a partir de uma solução atual e de uma estrutura de vizinhança, cada solução vizinha da solução atual tem uma probabilidade de ser avaliada. Se a solução vizinha avaliada representar uma melhora

no custo em relação à solução atual, a solução vizinha substitui imediatamente a solução atual. Caso a solução vizinha represente um aumento no custo, aceita-se de acordo com o critério de Metropolis [9], baseado na probabilidade de Boltzmann [5], calculada a partir da expressão estatística [7]

$$P = e^{\frac{f_i - f_s}{T_i}},\tag{1}$$

3

onde: P é a probabilidade da solução ser aceita como solução viável ao problema, f_s é o valor alcançado pela função objetivo com o atual valor que a heurística admitiu ser a solução ótima (custo da solução sucessora), f_i é o valor da função objetivo na iteração atual (custo da solução atual) e T_i é a temperatura atual do processo.

O parâmetro temperatura é muito importante e o seu valor precisa ser cuidadosamente definido. Estas peculiaridades se devem ao fato deste parâmetro ser responsável por controlar a amplitude dos saltos realizados no espaço solução e a sua aleatoriedade, agindo diretamente no fator de aceitação (equação (1)). Ao considerar o processo físico associado ao arrefecimento de um metal, tem-se que a temperatura precisa ser suficientemente alta para permitir que o algoritmo possa se mover para fora de um mínimo local, mas baixa o suficiente para não se mover para fora de um mínimo global [4]. Deste modo, o algoritmo aceita qualquer novo valor de solução, se a temperatura inicial for muito alta. Mas se a temperatura inicial for muito baixa, o algoritmo irá aceitar apenas novos valores de solução que melhorem a solução atual, encontrando rapidamente um mínimo local, onde pode ficar preso. Algumas abordagens sobre a definição do valor do parâmetro temperatura inicial são encontradas em [1,4,7].

A taxa de redução de temperatura (*Cooling Schedule*) faz com que o espaço de busca reduza em torno do ponto que se espera ser a solução ótima para o problema, sendo essencial para o bom desempenho do algoritmo SA. Segundo [7], a lei de arrefecimento geralmente usada no SA é dada pela expressão

$$T_{i+1} = \alpha T_i, \tag{2}$$

onde: T_{i+1} é a temperatura assumida que o sistema terá na próxima iteração, e α é o coeficiente de arrefecimento, normalmente constante. Quanto menor o α mais rápido é o arrefecimento do sistema, ou seja menor será o número de iterações exigidas para que o processo de parametrização convirja para uma solução. Por outro lado, quanto menor o α , maior o risco de a solução encontrada não ser a melhor, o que vai exigir uma melhor escolha da vizinhança de procura [7]. Comumente, são aconselhados para o α valores entre 0,8 e 0,99 [4,7]. Para [14], os valores para α pertencem ao intervalo [0,1], mas podem ser alterados durante o processo de busca, a partir da utilização de diferentes processos de resfriamento e reaquecimento. Outras expressões matemáticas utilizadas para reduzir a temperatura podem ser encontradas em [1,10,15].

O mecanismo de perturbação é um método utilizado para criar novas soluções a partir da solução atual, explorando a sua vizinhança a fim de criar pequenas alterações na corrente de solução em busca de uma nova e melhor solução [4]. Diversas estratégias de perturbação podem ser aplicadas, dependendo da natureza do problema e da criatividade do projetista. Em [4] é apresentado um exemplo de mecanismo de perturbação, onde a

solução s é definida por um vetor $s=(x_1,...,x_n)$ que representa um ponto no espaço de procura, e a nova solução é gerada utilizando um vetor $\sigma=(\sigma_1,...,\sigma_n)$ de desvios padrão para criar uma perturbação na solução atual. Surge então uma solução vizinha produzida a partir da solução

$$x_{i+1} = x_i + N(0, \sigma_i),$$
 (3)

onde: $N(0, \sigma_i)$ é um valor aleatório gaussiano com média zero e desvio padrão σ_i .

O SA deve parar sua busca, conforme o equivalente físico, quando atingir a solidificação, teoricamente, com o mínimo de energia, as principais formas empíricas utilizadas como critérios de parada são: alcançar um determinado número de iterações sem aceite de solução; atingir uma temperatura pré-estabelecida; e, para os sistemas que utilizam reaquecimento, executar determinado número de reaquecimentos sem melhora na função objetivo [12]. Além destes critérios, [4] cita também o valor mínimo de taxa de aceitação.

A definição dos parâmetros do algoritmo SA é um pouco subjetiva, sendo geralmente obtida a partir de uma base empírica. Então, considera-se que a forma como cada um destes parâmetros é implementado no algoritmo varia de acordo com o tipo de problema que se quer solucionar. A seguir é descrito o algoritmo SA proposto para otimizar um parâmetro do modelo *Battery*.

2.2 Algoritmo SA proposto

Em [3] é descrita uma aplicação do modelo Battery [8, 13] para a modelagem matemática do tempo de vida de baterias de Li-Po, modelo PL383562 - 2C. Este modelo possui 3 parâmetros que necessitam ser estimados a partir de curvas reais de descargas de baterias. A metodologia usualmente utilizada para estimar estes parâmetros é baseada na análise visual de curvas de descargas [11], o que torna este processo subjetivo. Em [3], foi desenvolvido um Algoritmo Genético para a estimação destes parâmetros. Neste trabalho, é apresentada a estimação de um destes parâmetros, o parâmetro Q_{Nom} , por meio do algoritmo SA proposto. Considera-se, para este trabalho, que os demais parâmetros do modelo Battery são conhecidos.

O problema de otimização abordado consiste na minimização de uma função objetivo a partir do ajuste sucessivo e iterativo do parâmetro Q_{Nom} . Para a formulação da função objetivo são utilizados dados experimentais e dados simulados pelo modelo Battery. Os dados experimentais utilizados, bem como o procedimento para a obtenção dos mesmos estão descritos em [3].

Para este estudo, é realizada a parametrização do modelo *Battery* considerando o perfil de descarga intermediário de 400 mA. Desta forma, inicialmente é gerada uma curva experimental de descarga referente a este perfil e é calculado o tempo de vida experimental médio. Considerando estes dados, para cada iteração do SA, o modelo *Battery* é parametrizado pelo SA com valor do parâmetro candidato à solução, e é então executado, fornecendo o tempo de vida simulado e a curva de descarga simulada. Assim, é integrada a diferença entre a curva simulada pelo modelo e a curva experimental escolhida inicialmente, e é calculada a diferença entre o tempo de vida simulado pelo modelo e o

tempo de vida experimental médio. Portanto, a função objetivo é dada por

$$E = f_c(\int_0^{t_{ve}} |V_s - V_e| \, dt) + f_v(|t_{vs} - t_{ve}|), \tag{4}$$

5

onde: f_c é o fator de importância da curva mais próxima do tempo de vida experimental médio, t_{ve} é o tempo de vida experimental médio (segundos), V_s é a tensão simulada pelo modelo (volts), V_e é a tensão experimental (volts), f_v é o fator de importância do tempo de vida experimental médio da bateria e t_{vs} é o tempo de vida simulado pelo modelo (segundos). O f_c e o f_v são constantes utilizadas para definir se o modelo deve buscar um ajuste melhor para curva, ou um ajuste melhor para o tempo de vida experimental médio, já que o modelo nem sempre consegue atingir estes dois objetivos simultaneamente de forma satisfatória, especialmente devido à queda brusca de tensão no início e no final da curva experimental.

A resposta obtida pelo algoritmo SA contém o parâmetro do modelo *Battery* otimizado. Com este parâmetro definido, o modelo é executado para todos os 31 perfis de descarga, inclusive para o perfil utilizado na parametrização. Este procedimento é realizado para validar a parametrização e analisá-la considerando outros conjuntos de dados que não fizeram parte do processo de otimização.

3 Resultados

Nesta seção são apresentados os resultados das simulações realizadas com o modelo Battery parametrizado por meio do algoritmo SA para o perfil de $400 \ mA$.

Perfis	t_{vem}	t_{vs}	Erro (%)	Perfis	t_{vem}	t_{vs}	Erro (%)
50	940,37	943,48	0,33	450	100,91	101,55	0,63
75	606,94	627,76	3,43	475	$94,\!26$	96,02	1,86
100	465,98	469,91	0,84	500	90,58	91,03	0,50
125	384,76	375,20	2,48	525	86,2	86,52	0,37
150	304,1	312,05	2,61	550	81,69	82,42	0,89
175	272,23	266,95	1,94	575	77,84	78,67	1,06
200	227,99	233,12	2,25	600	74,69	75,23	0,73
225	203,49	206,82	1,63	625	71,33	72,08	1,06
250	184,01	185,77	0,95	650	68,41	69,17	1,11
275	165,17	168,53	2,04	675	$65,\!97$	66,47	0,75
300	149,47	154,18	3,15	700	$63,\!51$	63,95	0,69
325	141,29	142,03	0,53	725	60,69	61,62	1,53
350	130,47	131,63	0,89	750	58,68	59,45	1,31
375	123,11	122,62	0,40	775	56,63	57,40	1,36
400	114,59	114,71	0,11	800	54,64	55,50	1,57
425	108,38	107,75	0,58				Erro médio = 1,28

Tabela 1: Resultados das simulações

Na Tabela 1 são apresentados os 31 perfis de descargas constantes em mA, e para cada um destes perfis é apresentado o tempo de vida experimental médio (t_{vem} em min), o tempo de vida simulado pelo modelo $Battery\ (t_{vs}$ em min) e o erro obtido. Também é apresentado o erro médio da calibração. O valor encontrado pelo algoritmo SA para o parâmetro Q_{Nom} é 0,7646.

Os resultados das simulações demonstram que a parametrização efetuada com o algoritmo SA obteve sucesso, fazendo com que o modelo Battery chegasse a um erro de apenas 0,11% para o perfil de descarga utilizado na calibração, um erro máximo de 3,43% para o perfil de 75mA, e um erro médio de 1,28%.

4 Conclusão

Neste trabalho foi apresentada a modelagem matemática da predição do tempo de vida de baterias de Li-Po a partir modelo Battery, tendo um de seus parâmetros estimados pelo algoritmo SA. O modelo foi validado a partir da comparação entre os tempos de vida simulados e os tempos de vida experimentais obtidos em uma plataforma de testes. Através dos resultados obtidos, conclui-se que o modelo Battery consegue prever com bastante acurácia o tempo de vida das baterias de Li-Po. Também conclui-se que o algoritmo SA proposto foi capaz de encontrar o parâmetro Q_{Nom} com boa acurácia.

Agradecimentos

Os autores agradecem à Capes, pelo apoio financeiro e à Unijuí e o GAIC, pela infraestrutura.

Referências

- [1] B. S. Almeida, P. E. D. Pinto, and R. R. A. Soriano. A técnica de simulated annealing aplicada aos problemas de percurso do cavalo e damas pacíficas. *CADERNOS DO IME: Série Informática*, 19, Dezembro 2005.
- [2] C. Blum, M. J. B. Aguilera, A. Roli, and M. Sampels. *Hybrid Metaheuristics: An Emerging Approach to Optimization*. Springer Publishing Company, Incorporated, 1st edition, 2008.
- [3] M. F. Brondani. Modelagem matemática do tempo de vida de baterias de lítio Íon polímero utilizando algoritmos genéticos. Mestrado, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijui-RS, Fevereiro 2015.
- [4] R. Chibante, A. Carvalho, and A. Araujo. Parameter Identification of Power Semiconductor Device Models Using Metaheuristics. INTECH Open Access Publisher, 2010.
- [5] D. Karaboga. Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks. Springer London, 2012.

- [6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. *SCIENCE*, 220(4598):671–680, 1983.
- [7] D. F. P. Magalhães. Modelo de baterias com aplicação em sistemas de gestão de baterias (bms) de veículos elétricos (evs). Mestrado, Faculdade de Engenharia da Universidade do Porto, Fevereiro 2013.
- [8] MathWorks. Implement generic battery model, 2015.
- [9] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. *Journal of Chemical Physics*, 21:1087–1092, 1953.
- [10] Y. Nourani and B. Andresen. A comparison of simulated annealing cooling strategies. Journal of Physics A Mathematical General, 31:8373–8385, October 1998.
- [11] C.M.D. Porciuncula. Aplicação de modelos Életricos de bateria na predição do tempo de vida de dispositivos móveis. Mestrado, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijui-RS, Abril (2012).
- [12] P. C. Ribas. Análise do uso de têmpera simulada na otimização do planejamento mestre da produção. Mestrado, PUC, Curitiba, 2003.
- [13] O. Tremblay and L.A. Dessaint. Experimental validation of a battery dynamic model for ev applications. World Electric Vehicle Journal, 3, 2009.
- [14] C. J. Vivan. Aplicação do método simulated annealing em um problema real de sequenciamento da produção. Mestrado, Universidade Federal do Paraná, Curitiba, 2010.
- [15] S. Zolfaghari and M. Liang. Comparative study of simulated annealing, genetic algorithms and tabu search for solving binary and comprehensive machine-grouping problems. 40:2141–2158+, 2002.