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Abstract. Design of Hub-and-spoke networks is an extension of classical facility location
problem and it is very important due to its applications in cargo, passenger and telecommu-
nication systems. The problem consists in determining the number and location of the hubs,
besides define the allocation of non-hub nodes to the installed hubs, aiming to minimize the
total costs. This problem is known to be NP-hard and it has been tackled by heuristic
based approaches. In this paper it is proposed an efficient multi-start heuristic composed
by a simple construction phase, a perturbation mechanism and an adaptive local search.
Computational experiments using standard benchmark problems shows that the proposed
approach is competitive when compared with the best heuristics in the literature.
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1 Introduction

The hub-and-spoke system has risen from industry’s efforts to develop more efficient
networks. In this system, a hub is a strategic center of the network, responsible for routing
and redistribution of the demand flow and a spoke (non-hub node) is a demand points.
In this type of network that the flow from different origins but addressed to the same
destination can be combined at hub nodes before be transmitted to their destination,
resulting in lower per unit transmission costs. This is called economies of scale and is the
main advantage of hub-and-spoke networks.

Hub-and-spoke networks are present in many applications, such as cargo and passen-
gers transportation and telecommunication systems [3,9]. There are numerous variants of

1rodrigo@rclink.com.br
2bruno.nonato@ifmg.edu.br
3xmartins@decea.ufop.br
4rodney@cpdee.ufmg.br
5rcamargo@dep.ufmg.br

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

Trabalho apresentado no CNMAC, Gramado - RS, 2016.

DOI: 10.5540/03.2017.005.01.0471 010471-1 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0471


2

hub location problems, this paper focus on networks with the single allocation, where each
non-hub node is allocated to a single hub, and there are no capacity constraints on hubs.
Furthermore, the number of hubs is not known beforehand, and there are fixed costs for
installation of hubs.

This problem is known in the literature as Uncapacitated Single Allocation Hub Lo-
cation Problem(USAHLP). The USAHLP is know to be a NP-hard problem. Due to
its complexity and practical applications, many researchers have developed heuristics to
solve it. Topcuoglu et al. [16] proposed a Genetic Algorithm (GA). Cunha and Silva [6]
develop an efficient combination of genetic algorithm and simulated annealing method.
Chen [5] presents a hybrid heuristic based on the Simulated Annealing method, tabu list
and improvement procedures. Silva and Cunha [15] implement three variants of a Multi-
Start Tabu Search heuristic and a two-stage integrated Tabu Search heuristic. Gomes et
al. [11] presented an efficient combination of Greedy Randomized Search Procedure and
GA. More recently, AbyaziSan et al. [2] proposed a tabu search(TS) with new tabu rules
and procedures to partial evaluations of objective function, this method outperforms the
results of others methods on one standard data sets commonly used in the literature.

This paper proposes a multi-start heuristic that uses a randomized construction phase
combined with the adaptative local search method. The proposed approach outperforms
the heuristic for the problem proposed in [11] and has performance competitive when
compared the best known heuristic for the problem [2].

2 Formulation

Given a set of demand nodes N which exchange flows and a set of candidates nodes
to become hubs. The binary variables zik indicates whether a node i ∈ N is allocated to
the hub k ∈ N (zik = 1) or not (zik = 0). Further, if a k node is set as a hub, zkk = 1, or
zkk = 0 otherwise. For all pair of nodes (i, j) with i 6= j, wij represents the demand flow
from origin to destination, which is routed through one or two installed hubs. Thus, cijkm
denotes the transportation cost per unit of flow from node i to j routed via hubs k and m.
This transportation cost is the composition of three cost segments: cijkm = cik+αckm+cmj
, where cik and cmj are the transportation cost per unit of flow from location i to hub
k and from hub m to node j, and αckm is the transportation cost between hubs k and
m considering the discount factor. The discount factor 0 ≤ α ≤ 1 represents the scale
economies on the inter-hub connections. Moreover, let fk be the installation cost of a hub
at node k. The USAHLP can be formulated as:

min

|N |∑
k=1

fkzkk +

|N |∑
i=1

|N |∑
j=1:

j 6=i

|N |∑
k=1

|N |∑
m=1:
m6=k

(wijcijkm + wjicijmk)zikzkm (1)

Subject to:
|N |∑
k=1

zik = 1 ∀i ∈ N (2)
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zik ≤ zkk ∀i, k ∈ N : i 6= k (3)

zik ∈ {0, 1} ∀i, k ∈ N (4)

The objective function (1) minimizes the costs of flow transportation and hub instal-
lation. The constraints in equation (2) assure that all the nodes are allocated to only
one hub. The constraints in equation (3) assure that non-hub nodes are assigned only
to hubs. Finally, constraints in equation (4) are the integrality constraints. Although
there are other formulations for the SAHLP [8], this is chosen because of its simplicity in
presentation.

3 A Multi-Start Heuristic

In multi-start heuristics a number of different initial solutions are generated and im-
proved by means of some local search procedure. This type of heuristic has been used
in combinatorial optimization by many authors to achieve diversification in the search
space, because of its simple framework for solving hard optimization problems. Different
approaches to this methodology can be found in [13].

On the other hand, this method focuses the search in the full space, which can harm
the intensification phase. Thus, a procedure based on Iterated Local Search (ILS) method
is used in order to make the intensification phase of the heuristic more efficient. The
essential idea of ILS is to focus the search not on the full space of solutions but on a
smaller subspace defined by the solutions that are locally optimal for a given optimization
engine [12].

In this paper, the initial solutions for the problem is randomly constructed, then an
adaptive local search algorithm is applied on this initial solution in order to explore the
neighborhood for better solutions. The local search is adaptive due to the fact of neigh-
borhood structures are used in accordance with their performance. Figure 1 illustrates
the proposed heuristic, where B is the set of neighborhood structures, and π is the degree
of perturbation applied to the incumbent solution which is used in local search procedure.
φ(s) is a function that calculates the total cost of a solution s according to equation (1), σ
is the threshold for update the probability p values, β is the threshold for perturb a solu-
tion s, and pi the probability of the i− th neighborhood structure used in the local search
procedure. This section, details the implemented Multi-start algorithm for the USAHLP.

3.1 Construction Procedure

The number of hubs, as well as the possibility of any node becomes hub is randomly
defined in the generation of the solutions. The nearest allocation heuristic [14] is used to
allocate the non-hub nodes to the installed hubs.

3.2 Local Search

When tackling the USAHLP, a great variety of neighborhood search strategies can
be explored. In this paper the local search procedure uses five neighborhood structures:
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PROCEDURE MultiStart(B, π, σ, β)
1BEGIN
2 pi ← 1/|B|, ∀i ∈ B
3 WHILE stop criterion is not satisfied
4 s ← Construction Procedure()
5 s ← Local Search(s,p,π,σ,β)
6 IF φ(s) < φ(s∗) THEN
7 s∗ ← s
8 END IF
9 END WHILE
10 Return s∗

11END

Figure 1: Multi-start algorithm.

“Reallocation”, “Hub Exchange”, “Remove Hub”, “Add Hub” and “Hub Exchange with
Reallocation”. The first four were explored using two different strategies known as best-
improvement and first-improvement. In the first-improvement, the solutions moves to the
first neighbor which cost function value is smaller than that of the current solution. In the
other case, all neighbors are investigated and the current solutions is replaced by the best
neighbor. The hub exchange reallocation neighborhood structure is explored only using
the first-improvement strategy due to its high cardinality.

The neighborhood structures are described as follow: the Reallocation tries all real-
location of a non-hub node to the installed hubs, the number and the installed hubs are
not changed; in the Hub Exchange a hub is selected to become a non-hub node and a
non-hub node is chosen to become a hub, then the non-hub nodes are reallocated to the
nearest hub; in the Remove Hub a selected hub is removed, then non-hub nodes are
reallocated to the nearest hub; in the Add Hub a chosen non-hub node become a hub,
then a non-hub nodes are reallocated to the nearest hub; in the Hub Exchange with
Reallocation for each movement involving the Hub Exchange structure, it is applied
a local search using the Reallocation movement.

The neighborhood structure is selected in adaptive manner, i.e., the probability asso-
ciated with each neighborhood is adjusted according to their efficiency. The neighborhood
structure that produces better solutions are more likely to be chosen. The probabilities
are adjusted according to the equations (5-6). Equation (5) is used at each σ iterations,
where ti is the number of times the new solution is better than the current solution for a
neighborhood i. Equation (6) only is used when the algorithm gets stuck in a minimum
local, the aim it is to allow the use of all neighborhood structures even the less efficient
ones. This is important in this situation because the solution is exposed to a perturbation
procedure. Empirical tests have been shown that the probability of new solutions may be
improved by these neighborhoods.

pi = ti/
∑
j∈B

tj ∀i ∈ B (5)

pi = (pi + 1/|B|)/2 ∀i ∈ B (6)

The perturbation procedure implemented in this work consists in changing the function
of nodes, i.e., a hub is transformed into a non-hub node and a non-hub node becomes a
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hub. Then a non-hub nodes are reallocated to the nearest hub. The percentage of nodes
changed is given by the parameter π.

Figure 2 illustrates the local search procedure implemented, where g is a number of
iterations and the stop criterion is h iterations without improvement.

PROCEDURE LocalSearch(s, p, π, σ, β)
1BEGIN
2 g, h← 0
3 s∗ ← s
4 WHILE stop criterion is not satisfied
5 choose i ∈ B with probability pi, i = {1, 2, ..., |B|}
6 g ← g + 1
7 s′ ← LocalSearch(Bi,s)
8 IF φ(s′) < φ(s) THEN
9 s← s′

10 ti ← ti + 1
11 IF φ(s) < φ(s∗) THEN
12 s∗ ← s
13 ti ← ti + 1
14 END IF
15 ELSE
16 h← h+ 1
17 END IF
18 IF g ≥ σ THEN
19 update p (use equation (5))
20 g ← 0
21 END IF
22 IF h ≥ β THEN
23 update p (use equation (6))
24 perturbation(s*,π)
25 h ← 0
26 END IF
27 END WHILE
28 Return s∗, p
29END

Figure 2: Local search procedure.

4 Computational experiments

The performance of the Multi-start heuristic was compared to [11] on AP data sets
[7], considering instances with sizes |N |={10,20,30,. . . ,100,130,150,170,200}. The scale
economies were set to α={0.2,0.4,0.6,0.8}. The instances are named by APN − α, where
N is the number of nodes on the network and α is the discount factor used. The instances
have fixed costs for the first 50 nodes, thus, the costs were randomly generated for all
nodes as in [4]. Each algorithm was run 10 times to all instances using distinct random
seeds, but utilizing the same seed in each run.

All computational tests were carried out on a computer with a Intel i7 processor at 2.0
GHz and 6 GB of RAM, running the Ubuntu operating system. Further, all algorithms
were implemented in C++. The generator of random numbers is the one embedded in the
C++ language. The parameter values of the heuristic were set to: π = 10%, σ = 20, and
β = 5. The stopping criterion for both methods was set to 0.6 ×|N | seconds, the GA and
TS parameters was maintained as in original paper [2, 11].
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The following metrics were computed: BestValue, DevMed, DevMin, #Best and %Ex-
ecutions. BestValue is the best solution attained among the algorithms considered for a
given instance. For each method, DevMin and DevMed represents, respectively, the aver-
age minimum and the average mean of the deviation between the best solution attained
by the algorithm and the BestValue of each instance. Thus, lower values for DevMed and
DevMin imply in better algorithm. Further, #Best represents the number of instances in
which the method return the BestValue. Finally, %Executions is the percentage os times
that the method obtained the BestValue considering all running for each algorithm.

Table 1 shows the values of all computed metrics. Although these results provide
a good performance indicator, they cannot be used to derive more general conclusions.
Then, the performance evaluation was performed using Friedman’s statistical test [10]
with a significance level of 5% (95% of confidence level). It was found that there is
significant difference among them, however it is not possible to state that one heuristic
is the best. Multi-Start and Tabu Search heuristics outperforms GA, but there is no
statistically significant difference between those two.

Table 1: GA x multi-start x Tabu Search results.

Metric GA Multi-start Tabu Search
DesvMin 0.0016 0.0002 0.0001
DesvMed 0.0018 0.0004 0.0001
#Best 34 48 49
%Executions 61.7 78.4 87.5

5 Conclusions

In this work was presented a Multi-Start heuristic to the USAHLP, simpler than the
others of literature . This method implements an efficient combination of intensification
and diversification phases, allowing a good exploration of the search space. In the inten-
sification phase was used an adaptive local search procedure, significantly improving its
performance. The proposed approach generated competitive results for the benchmark
instances.
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