Trabalho apresentado no CNMAC, Gramado - RS, 2016.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Um modelo de otimização multiobjetivo com influência da pluviosidade no controle do mosquito da dengue

Amália Soares Vieira de Vasconcelos¹ Rodrigo Tomás Nogueira Cardoso² José Luiz Acebal Fernandes³ Programa de Pós-Graduação em Modelagem Matemática e Computacional - Centro Federal de Educação Tecnológica de Minas Gerais, CEFET, Belo Horizonte, MG

Resumo. Atualmente, a dengue é a principal arbovirose que acomete o ser humano. Dada a inexistência de alguma vacina preventiva eficiente é necessário combater o mosquito transmissor da doença para conter o crescente número de casos no país. Este trabalho visa estudar o efeito da aplicação de inseticidas e/ou larvicidas durante o verão, considerando um modelo de otimização multiobjetivo que leva em conta a influência da pluviosidade, com o objetivo de minimizar a população de mosquitos bem como o tempo de aplicação, uma vez que os custos financeiro e social para a aplicação de controle são consideráveis. Foi utilizado o algoritmo genético NSGA-II para as simulações computacionais e a obtenção do conjunto Pareto ótimo. Aplicando as duas estratégias de controle propostas, o controle degrau concomitante e o controle decrescente concomitante, observou-se a diminuição do número de mosquitos *Aedes aegypti* ao longo do tempo, conseguindo uma estimativa do esforço que deve ser feito para controlar o vetor e, assim, as doenças que ele transmite.

Palavras-chave. Otimização Multiobjetivo, Algoritmos Genéticos, Controle da Dengue

1 Introdução

No ano de 2015 foram 1.649.008 casos de dengue confirmados no Brasil pelo Ministério da Saúde [1] e este número pode continuar crescendo ano após ano caso o principal vetor da doença, o mosquito *Aedes aegypti*, não seja combatido. Infelizmente ainda não há uma vacina preventiva de sucesso acessível aos brasileiros e, por este motivo, a única forma de evitar novos casos de dengue e as outras doenças que o mosquito pode transmitir (*e.g.*, zika e chikungunya), é eliminando seus criadouros.

Diante deste cenário, este trabalho propõe um estudo multiobjetivo para verificar a quantidade mínima de inseticidas para controle do vetor que deve ser aplicada no menor tempo possível, otimizando os custos financeiros envolvidos com a aquisição de inseticidas, custo com pessoal (*e.g.*, agentes comunitários de combate a dengue) e custo social

¹amaliasv@hotmail.com

 $^{^2} rodrigoc @des.cefetmg.br \\$

³acebal@dppg.cefetmg.br

$\mathbf{2}$

(tratamento de doentes). Para isso, um modelo matemático foi utilizado levando em consideração a dependência de dados da pluviosidade de uma determinada cidade, no caso Lavras - Minas Gerais, uma vez que diversos trabalhos (e.g., [2, 3]) sugerem que o crescimento da população do mosquito Aedes aegypti varie conforme os índices pluviométricos.

O modelo matemático utilizado neste trabalho é descrito na Seção 2. O foco principal é estudar a otimização do controle das fêmeas pós-repasto sanguíneo, que são as únicas capazes de transmitir o vírus da doença. O sistema dinâmico é uma das restrições do problema multiobjetivo estudado, que é abordado na Seção 3. Os resultados são discutidos na Seção 4 e, finalmente, a conclusão deste trabalho é apresentada na Seção 5.

2 Modelo Matemático

O modelo matemático entomológico utilizado foi o proposto por [2], que considera quatro populações do mosquito *Aedes aegypti*: a população de ovos (E) e a população aquática de larvas e pupas (A), que formam a fase imatura ou alada; a população de fêmeas pré-repasto sanguíneo (F1) e a população de fêmeas pós-repasto sanguíneo (F2), que formam a fase adulta, conforme a Equação (1).

$$\frac{dE}{dt} = \phi(p) \left(1 - \frac{E}{C(t)} \right) F_2 - \sigma_A(p) E - \mu_E(p) E - c_E(t) E
\frac{dA}{dt} = \sigma_A(p) E - \gamma(p) A - \mu_A(p) A - c_A(t) A
\frac{dF_1}{dt} = \gamma(p) A - \beta(p) F_1 - \mu_{F_1}(p) F_1 - c_{F_1}(t) F_1
\frac{dF_2}{dt} = \beta(p) F_1 - \mu_{F_2}(p) F_2 - c_{F_2}(t) F_2$$
(1)

em que:

- C: capacidade do meio;
- ϕ : taxa de oviposição intrínseca por unidade de fêmeas acasaladas férteis;
- γ: taxa por unidade de indivíduo em que o vetor passa da população aquática para a população de fêmeas pré-repasto sanguíneo;
- β : taxa por unidade de indivíduo com que fêmeas pré-repasto sanguíneo transformam em fêmeas pós-repasto sanguíneo;
- σ_A : taxa por unidade de indivíduo com que os ovos passam para a fase aquática;
- $\mu_E, \mu_A, \mu_{F_1}, \mu_{F_2}$: taxas por unidade de indivíduo que morre naturalmente em cada população;
- $c_E, c_A, c_{F_1}, c_{F_2}$: taxas por unidade de indivíduo que morre adicionalmente por causa do controle em cada população.

Os parâmetros C, c_E , c_A , $c_{F_1} \in c_{F_2}$ variam no tempo e os parâmetros ϕ , σ_A , γ , β , μ_E , μ_A , μ_{F_1} e μ_{F_2} variam conforme a pluviosidade da cidade. O estudo qualitativo do modelo foi amplamente discutido por [2], bem como os pontos críticos triviais e não triviais. A lei

3

de potência que os parâmetros obedecem pode ser verificada com maior clareza em [3]. A Tabela 1 apresenta os valores adotados para os parâmetros do modelo. Os dados de pluviosidade da cidade de Lavras - MG foram disponibilizados por [2].

Parâmetro	(Valor mínimo - máximo)	Parâmetro	(Valor mínimo - máximo)
C	$100 - 100 \text{ dias}^{-1}$	μ_E	$0,01 - 0,01 \text{ dias}^{-1}$
ϕ	$0,56 - 11,2 \text{ dias}^{-1}$	μ_A	$0,164 - 0,164 \text{ dias}^{-1}$
γ	$0,06 - 0,16 \text{ dias}^{-1}$	μ_{F_1}	$0,043 - 0,17 \text{ dias}^{-1}$
β	$0,2 - 0,2 \text{ dias}^{-1}$	μ_{F_2}	$0,057 - 0,17 \text{ dias}^{-1}$
σ_A	$0,01 - 0,5 \text{ dias}^{-1}$	$c_E, c_A, c_{F_1}, c_{F_2}$	Via otimização

Tabela 1: Parâmetros do modelo.

3 Otimização Multiobjetivo

Os problemas de otimização multiobjetivo são conhecidos por buscarem simultaneamente a otimização de mais de uma função objetivo geralmente conflitantes, já que não existe um único ponto mono-objetivo capaz de otimizar todas as funções ao mesmo tempo. Levando em consideração que, neste caso, a melhoria de uma função impacta diretamente em outra, ocorre uma relação de perda e ganho [4].

Assim, ao final do processo de otimização multiobjetivo um conjunto contendo todas as soluções não-dominadas é produzido, conhecido como conjunto Pareto-ótimo. Cabe ao tomador de decisão escolher, a partir do conjunto gerado, qual é a solução mais adequada considerando o efeito benéfico ou não em cada função objetivo.

A função objetivo deste trabalho, Equação (2), procura minimizar o custo com o controle tanto nas fases pré e pós-repasto sanguíneo, quanto nas fases imaturas, bem como o custo social, assim como em [5]. Desta forma, a aplicação de controle é feita de forma simultânea nas fases alada e adulta.

$$\begin{cases} \min J_{1}(u,t) = \frac{1}{2}(c_{1}u_{1}^{2}t_{1} + c_{2}u_{2}^{2}t_{2}) \\ \min J_{2}(u,t) = \frac{1}{2}(c_{3}\int_{1}^{90}F_{2}(t))dT \end{cases}$$
(2)
sujeito a:
$$\begin{cases} \text{Sistema dinâmico da Equação}(1) \\ 0 \leqslant u_{1} \leqslant 1 \\ 0 \leqslant u_{2} \leqslant 1 \\ 1 \leqslant t \leqslant 90 \end{cases}$$
(3)

Na equação acima, o domínio das variáveis de decisão é o intervalo de [0,1] por corresponder as possíveis taxas percentuais de aplicação de controle. Como cada estação do ano possui 90 dias de duração, o tempo varia de 1 a 90 dias. Para verificar a eficiência do controle foi utilizada a Equação (4), comparando os resultados com aplicação de controle com as populações do vetor caso nenhum tipo de controle seja aplicado. $A_c \in A_s$ o 4

número acumulado de fêmeas pré e pós-repasto sanguíneo com e sem controle, respectivamente. Desta forma, ε representa a redução, em percentagem, das fêmeas adultas durante o intervalo de tempo de um ano.

$$\varepsilon = \left(1 - \left(\frac{A_c}{A_s}\right)\right) \times 100\tag{4}$$

Dois tipos de controle foram utilizados neste trabalho: o degrau concomitante e o decrescente concomitante. O primeiro é caracterizado por realizar a aplicação de inseticidas u_1 durante o tempo t_1 e, simultaneamente, o controle u_2 é aplicado durante o tempo t_2 , com t_1 e $t_2 \in [1,90]$. No tipo de controle decrescente concomitante a aplicação de inseticidas u_1 é realizada durante o tempo t_1 e, simultaneamente, o controle u_2 é aplicado durante o tempo t_2 é aplicado durante o tempo t_1 e, simultaneamente, o controle u_2 é aplicado durante o tempo t_2 , diferenciando do tipo de controle anterior pela quantidade de inseticidas aplicada reduzir de forma decrescente ao longo do tempo.

Foram testados dois cenários distintos para o custo com controle e para o custo social. Os cenários 1 e 2 consideram uma variação do custo com inseticidas para as fases imatura e adulta, já que não há conhecimento sobre qual deles é maior, e penalizam o custo social com um valor menor, pois sabe-se que ele é maior que os demais. A Tabela 2 mostra os valores para os cenários obtidos empiricamente.

Tabela 2: Parâmetros de controle utilizados nos cenário	$\mathbf{s}.$
---	---------------

Cenário	c_1	c_2	c_3
1	10	100	0,01
2	100	10	0,01

O algoritmo genético NSGA-II foi escolhido para a busca de soluções do problema de otimização multiobjetivo deste trabalho, pela facilidade de implementação e por ser bastante conhecido na literatura para busca de soluções eficientes, como em [6]. Existem várias métricas de desempenho para verificar a qualidade de um resultado obtido a partir de um problema multiobjetivo. Para verificar a diversidade entre as soluções não-dominadas obtidas neste trabalho foi utilizada a métrica Spacing, que mede o desviopadrão das soluções. A S-Metric também foi adotada, pois verifica diversidade e ao mesmo tempo a proximidade com relação a fronteira de Pareto. Quanto maior o valor encontrado for melhor será, pois englobará mais soluções.

4 Resultados

A simulação de cada um dos casos estudados foi realizada em um computador com dois processadores Intel® Xeon® CPU E5-2680 0 de 2.7GHz, com memória RAM de 128GB e sistema operacional Windows 7 Ultimate de 64 bits do Centro de Computação Científica do Centro Federal de Educação Tecnológica de Minas Gerais.

A dinâmica das populações do vetor foi obtida por meio do algoritmo de Runge-Kutta de quarta ordem (para mais informações verificar [7]), implementado no software MATLAB® versão R2012a (7.14.0.739), com passo (Δt) = 0,01. Os parâmetros de entrada para o Algoritmo Genético NSGA-II foram obtidos empiricamente, após diversas simulações, conforme a Tabela 3.

Tabela 3: Parâmetros utilizados durante a execução do Algoritmo Genético.

Parâmetros	Valor
Número de gerações	200
Tamanho da população	200
Taxa de cruzamento	90%
Taxa de mutação	5%

Nas figuras a seguir estão representados os resultados encontrados para a estação verão, na qual ocorre o maior número de casos de dengue no Brasil. As Figuras 1a, 1b e 1c demonstram, respectivamente, a dominância dos conjuntos Pareto-ótimos após as execuções do algoritmo e os espaços de decisão nas fases imatura e adulta, considerando a aplicação de controle do tipo degrau concomitante.

Analisando as curvas de dominância da Figura 1a percebe-se que os resultados dos cenários 1 e 2 foram parecidos, mas ainda assim o cenário 2 possui alguns pontos que dominam o cenário 1. Por isso, optou-se por apresentar aqui apenas os resultados do cenário 2.

As Figuras 1b e 1c mostram os resultados encontrados para as quatro variáveis de decisão do problema de otimização, sendo a primeira figura referente à fase imatura e a segunda à fase adulta. A distribuição de controle no espaço de decisão das figuras ficou bem diversa, percorrendo todo o espaço de busca. Cada ponto ótimo encontrado corresponde a um ponto no conjunto não-dominado. Nota-se, nos dois casos, o prevalecimento do tempo de aplicação de controle próximo ao limite superior do problema, com t_1 e t_2 entre 70 e 90 dias. Já a quantidade de inseticidas a ser utilizada variou bastante e também notou-se um acúmulo maior perto do limite superior, principalmente na fase adulta.

As figuras 2a, 2b e 2c demonstram, respectivamente, a dominância dos conjuntos Pareto-ótimos após as execuções do algoritmo e os espaços de decisão nas fases imatura e adulta, considerando a aplicação de controle do tipo decrescente concomitante. Semelhante ao controle degrau concomitante, as curvas de dominância da Figura 2a mostram que os resultados do cenário 2 foram melhores. A distribuição de controle no espaço de decisão das Figuras 2b e 2c percorreu todo o espaço respeitando os limites do problema de otimização restrito. Percebe-se, nos dois casos, a concentração do tempo de aplicação de controle próximo ao limite superior do problema, com t_1 e t_2 entre 70 e 90 dias. A quantidade de inseticidas a ser utilizada variou tanto para a fase imatura quanto para a adulta.

A Figura 3 representa um exemplo de resultado encontrado para as métricas calculadas para a estação verão com controle decrescente concomitante e parece sugerir que há 6

Figura 1: Resultados do controle degrau concomitante durante o verão.

Figura 2: Resultados do controle decrescente concomitante durante o verão.

uma menor variabilidade nos valores da S-Metric nas gerações finais. Da mesma forma, o desvio-padrão foi reduzindo cada vez mais, mostrando a qualidade das soluções encontradas. Apesar da S-Metric apresentar melhores resultados para o cenário 1, a Spacing mostra que as soluções não-dominadas do cenário 2 são melhores, reafirmando a preferência por este cenário. As métricas de desempenho apresentadas refletem a efetividade do algoritmo genético escolhido, capaz de encontrar um conjunto de soluções não-dominadas com qualidade.

5 Conclusões

Um modelo matemático entomológico foi utilizado para analisar o comportamento das populações imatura e adulta do mosquito *Aedes aegypti*, após a aplicação ótima de dois tipos de controle com inseticidas e larvicidas. Considerando os custos financeiros e sociais envolvidos, o modelo proposto permite ao decisor a escolha da solução que melhor atende suas necessidades, optando por privilegiar pelo custo social ou pelo custo financeiro. O controle decrescente concomitante é preferível já que sua ação é efetiva no início do processo, de modo a permitir uma redução de sua intensidade ao longo do tempo.

Figura 3: S-Metric e Spacing - controle decrescente concomitante durante o verão.

Agradecimentos

À FAPEMIG e ao CEFET-MG, pelo apoio financeiro e a todos os colaboradores.

Referências

- Brasil. Ministério da Saúde, Brasília, DF. Boletim Epidemiológico, 2016. Volume 47, número 3.
- [2] L. S. Barsante. Dependência entre pluviosidade e população de fêmeas Aedes aegypti grávidas descritas através de um sistema dinâmico não linear. Dissertação de Mestrado em Modelagem Matemática e Computacional, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, 2012.
- [3] F. S. Cordeiro, L. S. Barsante, B. S. Carvalho, R. T. N. Cardoso, Á. E. Eiras, and J. L. Acebal. Towards forecasting the infestation level by dengue vectors based on meteorological forecast. 2015. To appear.
- [4] Kalyanmoy Deb. Prologue; Multi-Objective Optimization. In Multi-Objective Optimization Using Evolutionary Algorithms, chapter 1-2, pages 2–46. John Wiley & Sons, Inc., New York, NY, USA, 2001.
- [5] F. S. Veríssimo, L. S. Barsante, R. T. N. Cardoso, and J. L. Acebal. Modelagem e controle do Aedes aegypti durante as estações do ano através do algoritmo genético. *Conferência Brasileira de Dinâmica, Controle e Aplicações*, 2015.
- [6] W. O. Dias, E. F. Wanner, and R. T. N. Cardoso. A multiobjective optimization approach for combating *Aedes aegypti* using chemical and biological alternated step-size control. *Mathematical Biosciences*, 269:37–47, 2015. DOI: 10.1016/j.mbs.2015.08.019.
- [7] F. F. Campos Filho. Equações diferenciais ordinárias. In Algoritmos Numéricos, chapter 7, pages 323–352. LTC, Belo Horizonte, 2007.

7