Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Busca Tabu aplicada à otimização da movimentação nas operações de carga e descarga de navios porta-contêineres

Joel da Silva Gonçalves Júnior¹ Leonardo Dagnino Chiwiacowsky² Prog. Interdisciplinar de Pós-Graduação em Computação Aplicada, UNISINOS, São Leopoldo, RS

1 Introdução

A matriz de transportes de um país promove a circulação de produtos, cargas e de pessoas e, neste contexto, as operações portuárias possuem alta relevância estratégica. A eficiência de um terminal portuário está baseada no planejamento adequado do carregamento dos contêineres no navio, minimizando a ocorrência de remanejamentos [3].

O problema do carregamento de navios porta-contêineres consiste na elaboração de um plano de carga, sendo classificado como um problema de otimização combinatória pertencente à classe NP-Completo [1]. Em função disso, pode ser importante o emprego de técnicas metaheurísticas para sua solução, principalmente no caso de instâncias reais do problema. Em [2], foi proposto um Algoritmo Genético (AG) empregando a codificação da solução baseada em regras de carregamento, tendo sido apresentados resultados promissores. A abordagem proposta aqui está baseada na metaheurística Busca Tabu (BT), também com emprego da codificação da solução baseada em regras, sendo propostas novas regras em complemento àquelas propostas em [2].

2 Metodologia e Resultados

A BT proposta foi implementada empregando uma geração de vizinhança baseada na modificação aleatória das regras utilizadas na solução corrente. A lista tabu guarda os movimentos realizados pelas últimas 20 soluções, registrando o porto que teve a sua regra alterada e aquela que era utilizada pela solução anteriormente visitada. O critério de parada adotado foi de 20 iterações sem melhora da função objetivo (FO). Foram, então, propostos dois cenários de teste, variando o número de regras utilizadas pelo algoritmo em 12 e 24 regras. Os experimentos foram realizados em um computador com processador Intel Core i7 930, sendo avaliadas 15 instâncias disponíveis na literatura [2] e calculandose a média dos desvios em relação ao ótimo global de um conjunto de 30 execuções. Os resultados obtidos são comparados com os resultados do AG com 12 regras [2], sendo apresentados na Tabela 1, onde Np indica o número de portos na rota do navio, M o tipo de matriz de transporte [2] e Nmin a solução ótima.

¹joeljuniorg@gmail.com

²ldchiwiacowsky@unisinos.br

Tabela 1: Comparação de resultados: BT com 12 e 24 regras vs. AG com 12 regras

Np	M	Nmin	AG (12 regras)		BT (12 regras)		BT (24 regras)	
			FO	GAP (%)	FO	GAP (%)	FO	GAP (%)
10	1	6994	7072	1,12	7516	7,46	7148	2,20
10	2	4172	4214	1,01	4714	12,99	4554	9,16
10	3	17060	17116	0,33	17186	0,74	17064	0,02
15	1	9974	10584	6,12	10464	4,91	10150	1,76
15	2	4824	5030	$4,\!27$	5968	23,71	5638	16,87
15	3	24908	25046	$0,\!55$	25032	0,50	24918	0,04
20	1	10262	10802	$5,\!26$	10816	5,40	10618	3,47
20	2	4982	5500	10,40	6072	21,88	5844	17,30
20	3	32602	32638	0,11	32630	0,09	32604	0,01
25	1	11014	11848	7,57	11744	6,63	11340	2,96
25	2	5002	5466	9,28	5546	10,88	5366	7,28
25	3	43722	44082	0,82	43802	0,18	43732	0,02
30	1	11082	12580	$13,\!52$	11834	6,79	11670	5,31
30	2	4720	5312	$12,\!54$	5142	8,94	5030	6,57
30	3	53592	54398	1,50	53712	$0,\!22$	53594	0,004
Média dos GAPs				4,96		$7,\!42$		4,86

3 Conclusões

Comparando os resultados da BT com 12 regras em relação ao AG com 12 regras, observa-se melhora em mais de 50% das instâncias testadas, apesar de o valor de GAP médio da BT (7,42%) ser maior que o GAP médio do AG (4,96%). No caso da BT com 24 regras, o GAP médio obtido foi de 4,86%, menor que o GAP médio do AG com 12 regras, exibindo melhora em 11 dos 15 casos testados, demonstrando, assim, maior eficiência.

Os resultados obtidos mostram que a Busca Tabu, apresenta resultados eficientes de minimização, sendo uma alternativa à solução do problema. É possível concluir também que o emprego de um número maior de regras viabiliza um incremento na eficiência da operação do terminal.

Agradecimentos

Os autores gostariam de agradecer à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo suporte financeiro dado para a realização desta pesquisa.

Referências

- [1] M. Avriel, M. Penn e N. Shpirer. Container Ship Stowage Problem: Complexity and Connection to the Coloring of Circle Graphs, *Discrete Applied Mathematics*, 103:271–279, 2000.
- [2] A. T. Azevedo, C. M. Ribeiro, L. L. Neto, M. P. E. Silva e M. C. Silvestre. Resolução do problema de carregamento e descarregamento 3D de contêineres em terminais portuários via representação por regras e algoritmo genético, Revista GEPROS. Gestão da Produção, Operações e Sistemas, 6(4):91–110, 2011.
- [3] I. D. Wilson e P. A. Roach. Container stowage planning: a methodology for generating computerized solutions, *Journal of the Operational Research Society*, 51:1248–1255, 2000.

010448-2 © 2017 SBMAC