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The design of riparian buffer strips (RBS) with adequate width to consistently serve conser-
vation purposes is discussed. From the diverse ecological functions RBS, we concentrate on
the filtering of agrochemicals, more especifically nitrogen loads due to uphill agriculture ac-
tivity. Towards this end, we use experimental data from previous studies on mean nitrogen
influent, filtering efficiency, soil type, vegetation density and mean RBS width to system-
atically train, validate and test about 6, 000 artificial neural networks (ANNs) of diverse
architectures. The results show that the ensemble largely outperforms most individual net-
works. Further, the results indicate that the existing buffer vegetation width is insufficient
for filtering purposes and that the buffer width proposed in the Brazilian environmental law
is about 40% below the value advocated by the specialized ANNE for most sub-basins in
the watershed.

1 Introduction

Scientific studies worldwide make it clear the importance of the riparian buffer strips
(RBS) in the conservation of species, water courses, water quality and availability [1–7].
Although the functions and importance of RBS are widely acknowledged, it is somehow
cumbersome to systematically establish what the adequate RBS features would be for a
given stretch of river. Several studies provided pieces of knowledge about this topic using
different objectives and methodologies. In reference [6], the authors used SWAT (Soil
and Water Assessment Tool) to compare the effectiveness of buffer strips and contour
strips, having concluded that the percentage of nitrate outflow decreases as the buffer
strip increases. In accordance with these reults, reference [7] found by means of numerical
simulation and experimentation that the specific retention per square meter is lower in
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buffer strips with 10 meters as compared to 5 meters, thus indicating that the initial area of
the buffer strip does a more intensive filtering and that the curve of filtering effectiveness
vs. buffer width flattens as the buffer width increases. It was also found that a 10
meter buffer accomplishes significantly higher percent removal efficiency, which confirms
previous results that nitrate outflow decreases as the buffer strip increases [7]. Another
important result regarding ground water nitrate removal that seems to broadly apply is
that narrow but continuous buffer strips are more effective than wider but intermittent
ones of comparable area [1]. In [5], the author applies the detention-time model and the
RBDE - Riparian Buffer Delineation Equation - to evaluate the effectiveness of nitrate
removal in runoff under the assumption that longer detention times contribute to reduce
transport capacity. It was found that, although all buffer strips play a significant role in
the conservation of water quality, their effectiveness is higly dependent on width.
Towards a better understanding of the relations between characteristics and function of
RBSs, the application of artificial intelligence techniques can be of value, since they are
tailored to handle dense amount of data and learn from them. As a matter of fact, while
ANN were widely studied and demonstrated to give satisfactory response in a wide range
of situations, there are several applications in which Artificial Neural Network Ensembles
(ANNEs) were shown to outperform individual neural networks [8–12]. The main reason
is that, in principle, the output errors in an ensemble of independently trained ANNs tend
to cancel out, thus enhancing error mean and variance.
In this paper, we investigate the application of ANNEs in the problem of estimating the
required width of riparian buffer strips from its desired filtering properties. Particularly, we
seek an estimation of the riparian buffer width as a function of vegetation type, soil type,
nutrient concentration and filtering effectiveness. Towards that end, we train, validate and
test neural networks with six different architectures for a hundred resamples of the original
dataset and ten random sets of initial weight and bias conditions for each architecture. On
this basis, we propose a highly reproducible methodology for the application of ANNE to
handle the mapping of such relations and provide a systematic design-oriented account on
the matter, aimed at enhancing and particularizing the process of establishing minimum
configurations for RBS that will effectively accomplish their desired ecological conservation
services. Once trained, validated and tested, ANNEs could be readily applied in automated
processes of estimating riparian buffer widths within entire catchment basins, on the basis
of desired filtering properties and accessible parameters.

2 Materials and methods

The region under study is the Ligeiro River watershed, located in the city of Erechim,
Rio Grande do Sul state, Brazil, between −27o39′ and −27o43′ Latitude, and −52o14′

and −52o18′ Longitude. Rainfall in the watershed is distributed throughout the year with
rainfall events in every month, thereby presenting a cumulative annual rainfall of about
2,200 mm. The Ligeiro River watershed is 21.18 km2 in area, from which 4.94 km2 are
composed of as forests and 16.04km2 as crop land. According to the Brazil’s Forest Code,
the watershed should have 2.10 km2 in area of riparian vegetation, however, it has only
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0.94 km2.
Two datasets were used throrough the research: the first one is a complete dataset from the
literature [2] with 39 records including mean nitrogen influent (MNI), removal effectiveness
(RE), vegetation cover type (VCT), soil type (ST) and buffer width (BW). This dataset
was used for training, validation and test of the ANNs. The second dataset has 165 records
corresponding to each of the sub-basins of the watershed. It it is composed of experimental
data, satellite data and empirical equations (MNI, VCT, ST). In this case, RE is a design
choice (RE = 90%) and BW is defined as output. To estimate the width of the RBS as
a function of the parameters MNI, RE, VCT and ST data, we use these parameters as
inputs to the network. VCT was input as a density parameter belonging to the interval
[0, 1] according to groups of land use classification performed in GRASS GIS 7.0 using the
Landsat image of the watershed [13] and in loco validation of a dozen key points. Due
to the absence of experimental data for the watershed, the MNI for each sub-basin was
estimated on the basis characteristic nitrogen load from soybean croplands [14]. Towards
that end, it was assumed the contribution of each sub-basin scales with its cropland area
and concentrates equally along the length of the stretch of river to which it contributes
for a constant depth. Further, since we are interested in the sub-superficial transport, we
regard the amount of precipitation and estimate the share of runoff and evapotranspiration
for the watershed. As a result, the MNI for the jth sub-basin was estimated as

MNIj =
1

µ
C ·

Acropland
j

Lriver
j

· 1

P runoff
j

(1)

where MNIj (ppm) is the nitrogen load for the jth sub-basin, C (mg/m2) is the typical
nitrogen load for the respective cropland, µ is the soil porosity, Lriver

j (m2) is the area of the

longitudinal section of the river that receives contribution of the jth sub-basin, Acropland
j

(m2) and P runoff
j (l/m2) is runoff. Due to the river’s morphology in the watershed,

we consider all longitudinal sections to have unitary depth. Each ANN was designed to
have 4 inputs (MNI, RE, VCT, ST) and 1 output (BW). The training, validation and
tests sets were obtained as follows. From the original dataset, 15% of the records were
randomly selected to compose the test set to be used for all the ANNs. The remaining
records were resampled with substitution 100 times, in order to generate 100 datasets.
Each of such datasets was divided into training and validation subsets having 70% and
15% of the total number of records of the original dataset. The training was performed
using Backpropagation Algorighm, learning rate 0.7 and a maximum of 500 epochs. The
sigmoid function was used as neuron activation function. The input and output data
were normalized to the interval [0, 1] to fit the activation function. We considered all
architectures from 2 to 7 neurons in the hidden layer to satisfy the upper bound proposed
in reference [15]. The parameters for each ANN were chosen during the validation process
by using the early stopping criterion. After the training and validation and test of all
the ANNs the test error vector was calculated. The ANNs were ranked according to the
norm of the error vector and the ones with error below 35% were selected. The Pearson
correlation coefficient was calculated from the test error vector for each pair of ANNs to
compose a correlation matrix. From this matrix, the ANNs with correlation coefficients
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Classification Test error norm Number of neurons in the hidden layer

1 0.18 6
2 0.22 5
3 0.24 7
4 0.29 7
5 0.30 6
6 0.31 7
7 0.32 6
8 0.32 3
9 0.33 3
10 0.34 7

Table 1: Training log for the best performing ANNs: the results show that several distict
network architectures were selected for the ensemble, most of them with relatively large
hidden-layers, thus indicating that the relationship was captured more effectively by ANNs
with more neurons.

below 0.5 (mild or no correlation) were selected to compose the ensemble. Following these
criteria, the number of ANNs in the ensemble resulted to be n = 10. The ANNE was then
applied in the study of the performance-oriented design of riparian buffer strips in the
Ligeiro River watershed, considering 90% of removal effectiveness as a design criterion.

3 Results and discussion

3.1 The neural network ensemble

The training, validation and test of the ANNs took about two days to complete in
a 8−core Xenon workstation. The training errors were found to monotonically decrease
with the increase of epochs. This is not always the case of validation errors, which initially
decrease to reach a minimum and tend to grow again. The point marked with an star (*)
indicates the point of early stopping, from which the network parameters are collected.
The resulting architectures and test errors are presented in table 1.

Further evaluation was performed to compare the performance of the network ensem-
ble against that of the individual networks by randomly picking records from the original
database. Test results indicated that the ANNE outperformed over 96% of the individual
neural networks regarding error vector norm (figure 1) and mean error. Further, they con-
sistently reduced the variance of the output errors relatively to individual neural networks
(figure 2).

3.2 Performance-oriented design of RBSs

Buffer widths presented values distinguished in classes, despite the variability in the
mean nitrogen influent for each sub-basin. A somewhat similar behavior was observed in
reference [3], as the output of nitrogen and phosphorus into streams was comparably low
despite the different input load. This illustrates the fact that the uphill part of the buffer

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0575 010575-4 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0575


5

Figure 1: Individual error vs. ensemble error for the 50 networks with best error perfor-
mance: the graph shows that the ensemble error magnitude is comparable to that of the
best individual network.

Figure 2: Individual variance error vs. ensemble variance error for the 50 networks with
best error performance: the graph shows that the variance of the ensemble error is con-
siderably smaller than that of the individual networks.
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Figure 3: Missing RBS in the Ligeiro River watershed, obtained by means of comparing the
ANNE output and the current situation obtained by land use classification in GRASS GIS
7.0: the estimated deficit amounts 1.97 km2 of vegetated area according to the specialized
ANNE and 1.16 km2 according to the current environmental law.

vegetation retains a larger share of the nutrients, since the specific removal per meter is
reported to decrease downhill. It is worth noting that the largest width value from the
ANNE response, about 47 meters, is rather close to the 50 − 60 meter range indicated by
the authors in [3]. In fact, the variability in ANNE buffer width was observed to depend
more heavily upon the vegetation cover type (CT) and desired removal effectiveness (RE).
Regarding CT, it was observed in [3] that higher nitrogen uptake observed in younger
vegetation makes it more effective in nitrogen removal. This agrees with the results of
the ANNE, since it was observed that grass-forest regions were identified as the areas less
demanding of buffer width for the same filtering effectiveness. As one compares the results
of the ensemble with the current buffer strips in the watershed it can be concluded that
there is deficit of 1.97 km2 of riparian vegetation (figure 3).

4 Final remarks

This study presented a primer on the application of neural network ensembles to the
problem of estimating riparian buffer width on the basis of desired filtering properties.
We turned our attention to nitrogen, whose presence nearby water bodies can severely
affect water quality [2]. Based on the results, we can summarize that neural network
ensembles can effectively capture the relations among the indicators related to the potential
of mitigation of nutrient pollution.
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