Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Teste de verificação de um código para a equação de Poisson unidimensional

Mateus Paranaíba Ribeiro¹ Faculdade de Ciências Integradas do Pontal, UFU, Ituiutaba, MG Homero Ghioti da Silva² Faculdade de Ciências Integradas do Pontal, UFU, Ituiutaba, MG

1 Resumo

A equação de Poisson é uma equação elíptica de derivadas parciais com uma ampla utilidade em Dinâmica de Fluidos. Quando se trata das condições de contorno aplicadas a esse problema, uma atenção maior é dada para as de Dirichlet e Neumann. É possível encontrar literatura referente ao problema de Dirichlet. No entanto o fato da restrição da existência de solução torna o problema de Neumann mais desafiador [2]. Portanto neste trabalho objetivou-se desenvolver um código computacional que calcule a equação de Poisson unidimensional com condição de contorno de Neumann heterogênia ($g \neq 0$):

$$\Delta p(x) = f(x); \quad x \in \Omega
\frac{\partial p}{\partial n}(x) = g(x); \quad x \in \partial\Omega,$$
(1)

onde, $\Omega \subset I \subset \mathbb{R}$, com I intervalo fechado. A função f é um termo fonte e g uma função que controla a variação de p na fronteira.

O problema de Neumann envolve satisfazer uma restrição para a existência de solução. Ela se da escolhendo f e g em (1) satisfazendo a seguinte equação:

$$\iint_{\Omega} f \, \mathrm{d}\Omega = \int_{\partial\Omega} g \, \mathrm{d}S \tag{2}$$

A discretização da equação de Poisson foi realizada usando o método das diferenças finitas centradas de segunda ordem de precisão. O sistema linear resultante foi resolvido numéricamente pelo Método de Gauss-Seidel.

Neste trabalho os resultados foram obtidos para o caso com condição de contorno de Dirichlet. O programa computacional foi submetido a um teste de verificação usando o método da solução manufaturada [1]. Desta forma foi assumido $p(x) = -\sin x$ onde $x \in [0, 2\pi]$, a solução manufaturada para as comparações numéricas. Foram utilizados os seguintes níveis de refinamento:

¹mateusparanaiba@gmail.com

²homero@ufu.br

Tabela 1: Níveis de refinamento. O espaçamento foi $h = 2\pi/(n-1)$

Malhas	1	2	3	4	5	6	7
Pontos(n)	64	128	256	512	1024	2048	4096

A figura abaixo representa o erro médio e máximo da solução numérica no teste de refinamento de malhas:

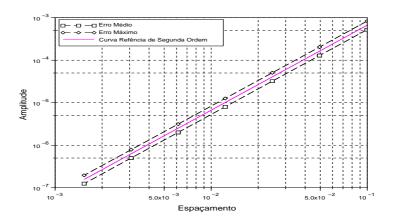


Figura 1: Teste de Verificação do código.

2 Conclusões

Os resultados apontaram convergência assintótica de 2^a ordem de precisão, compatível com a ordem teórica do método de diferenças finitas utilizado. O código está sendo modificado para estudos do problema de Neumann (1) e esperamos obter os resultados até a data do evento. O trabalho foi financiado por: CNPq(CNPQ2016-EXA068); FAPEMIG.

Referências

- [1] H. G. Silva, L. F. Souza e M. A. F. Medeiros. Verification of a mixed high-order accurate DNS code for laminar turbulent transition by the method of manufactured solutions, *International Journal for Numerical Methods in Fluids.*, 64:336-354, 2010. DOI: 10.1002/fld.2156.
- [2] V. R. Rocho, Métodos Iterativos para a Solução da Equação de Poisson, Dissertação de Mestrado em Matemática Aplicada, UFRGS, (2012).