Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Caracterização de sequências gráficas

Wagner Mariano Pinheiro¹ André Ebling Brondani² Instituto de Ciências Exatas, UFF, Volta Redonda, RJ

Resumo

Seja G um grafo simples de ordem n. A sequência de graus de G é uma n-upla cujas coordenadas, dadas em ordem não crescente, correspondem aos graus dos vértices de G. Uma sequência de graus, em geral, não identifica unicamente um grafo. A Figura 1 exibe as árvores T_1 e T_2 com a mesma sequência de graus (3, 2, 2, 2, 2, 1, 1, 1).

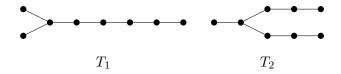


Figura 1: Árvores com a mesma sequência de graus.

Uma sequência de inteiros não negativos $\mathbf{d} = (d_1, d_2, \dots, d_n)$ é gráfica se existe um grafo cuja sequência de graus é d. Para que a sequência $\mathbf{d} = (d_1, d_2, \dots, d_n)$ seja gráfica é necessário $\sum_{i=1}^{n} d_i$ seja par e $0 \le d_i \le n-1$, $1 \le i \le n$. No entanto, essas duas condições juntas, não são suficientes para que uma sequência seja gráfica, como mostra o Exemplo 1.

Exemplo 1. A sequência $\mathbf{d} = (7,6,3,3,2,1,1,1)$ não é gráfica, apesar de que cada termo de \mathbf{d} é um inteiro não negativo menor que oito e a soma dos termos é par. De fato, se d fosse gráfica, deveria existir um grafo G com oito vértices cuja sequência de graus é \mathbf{d} . Sejam u e \mathbf{v} os vértices de G cujos graus são $\mathbf{7}$ e $\mathbf{6}$, respectivamente. Como \mathbf{G} é simples, u é adjacente a todos os demais vértices de \mathbf{G} e \mathbf{v} , além de \mathbf{u} , deve ser adjacente a outros cinco vértices. Isto significa que o conjunto $V - \{u, v\}$ possui cinco vértices com grau, ao menos, $\mathbf{2}$; mas este não é o caso.

Existem vários resultados que fornecem condições necessárias e suficientes para que uma sequência de inteiros não negativos seja gráfica. As caracterizações mais conhecidas são o Teorema de Havel-Hakimi e o Teorema de Erdos-Gallai, que enunciamos a seguir.

 $^{^1} w mariano@id.uff.br\\$

 $^{^2}$ andrebrondani@id.uff.br

2

Teorema 1 (Havel [1]; Hakimi [2]). Seja $\mathbf{d} = (d_1, d_2, \dots, d_n)$ uma sequência não crescente de inteiros não negativos tal que $d_1 \leq n-1$. Então \mathbf{d} é gráfica se e somente se $\mathbf{d'} = (d_2 - 1, d_3 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n)$ é gráfica.

Teorema 2 (Erdos e Gallai [3]). Uma sequência não crescente de inteiros não negativos $d = (d_1, d_2, \ldots, d_n)$ é gráfica se e somente se $\sum_{i=1}^n d_i$ é par e para cada inteiro $s, 1 \le s \le n$,

$$\sum_{i=1}^{s} d_i \le s(s-1) + \sum_{j=s+1}^{n} \min(d_j, s).$$

Este trabalho tem como objetivo apresentar um estudo comparativo de alguns critérios que caracterizam sequências gráficas, como os dados nos Teoremas 1 e 2, destacando suas vantagens e desvantagens, além de fazer uma análise das operações de grafos aplicadas em suas demonstrações.

Referências

- [1] V. Havel, A remark on the existence of finite graphs, Casopis Pest. Mat., 80: 477–480, 1955.
- [2] S.L. Hakimi. On the realizability of a set of integers as degrees of the vertices of a graph, *J. SIAM Appl. Math.*, 10: 496–506, 1962.
- [3] P. Erdos, T. Gallai, Graphs with prescribed degrees of vertices, *Mat. Lapok*, 11: 264–274, 1960.