Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Uma Abordagem Contínua do Problema da Geometria de Distâncias

Alisson Lucas de Souza¹ André Luís Machado Martinez² Departamento Acadêmico de Matemática, UTFPR, Cornélio Procópio, PR

1 Introdução

Apresenta-se neste trabalho um estudo sobre o Problema da Geometria de Distâncias (PGD) sob o ponto de vista da Otimização Contínua, por meio de uma comparação entre Otimização Não-Linear e Resolução de Sistemas Não-Lineares. O PGD é estudado desde as primeiras décadas do século XX [1] até chegar aos dias atuais com a seguinte formulação: encontre os pontos x_1, x_2, \ldots, x_n tais que: $||x_i - x_j|| = d_{ij}$, $(i, j) \in S$, onde S é um subconjunto de pares de pontos cujas distâncias d_{ij} são conhecidas [1,2].

Para a comparação entre a Otimização Não-Linear e a Resolução de Sistemas Não-Lineares para resolver o PGD, foi utilizado o método BFGS na primeira abordagem e o método de Gauss-Newton para trabalhar com a segunda abordagem.

2 O Problema da Geometria de Distâncias

Sob o olhar da Otimização Não-Linear, considera-se o problema:

$$\min \sum_{i,j} (\|x_i - x_j\|^2 - d_{ij}^2)^2 \quad \text{s.a.} \quad x_i \in \mathbb{R}^3, \ i = 1, \dots, n.$$
 (1)

A grande dificuldade nesta formulação é que a quantidade de mínimos locais cresce exponencialmente com o número de pontos considerados no problema, enquanto o objetivo é encontrar o mínimo global [1]. Pode-se ainda considerar somente as distâncias d_{ij} , tais que $i \leq j$ e, deste modo, a Matriz de Distâncias Euclidianas (EDM, do inglês Euclidian Distance Matrix) $D = [d_{ij}] \in \mathbb{R}^{n \times n}$ será uma matriz triangular superior com diagonal nula.

Além dessa formulação contínua do PGD, também é possível tratá-lo como um Sistema Não-Linear. O problema passa a ser resolver o sistema não-linear r(x) = 0 dado por:

$$r_k(x) = ||x_i - x_j||^2 - d_{ij}^2 = 0, \ k = 1, \dots, m.$$
 (2)

 $^{^1} alisson souza@alunos.utfpr.edu.br\\$

²martinez@uftpr.edu.br

2

Nesta abordagem, também considera-se a Matriz de Distâncias Euclidianas como dito anteriormente e, com isso, m representa o número entradas não-nulas da matriz D, isto é, $m = \frac{n^2 - n}{2}$. Para resolver (1) foi utilizado o método BFGS, que caracteriza-se como um método Quase-Newton, por aproximar a Hessiana da função objetivo com propósito de diminuir o gasto computacional utilizado pelo Método de Newton no cálculo da Hessiana [3]. Por outro lado, para resolver (2) foi aplicado o Método de Gauss-Newton, uma das abordagens mais clássicas para a resolução de sistemas não-lineares de modo iterativo, que por sua vez utiliza a matriz Jacobiana da função objetivo [3].

Nos testes numéricos, a matriz D foi gerada da seguinte forma: cria-se os vetores v_i , $i=1,\ldots,n$ aleatoriamente e, após isso, determina-se cada entrada da matriz fazendo $d_{ij} = ||v_i - v_j||$. Os métodos foram implementados no MATLAB³. Nos testes cada problema foi rodado 100 vezes e somente salvo o resultado em que o método atingiu o menor valor de função, para cada um dos problemas: com n=100,300 e 400 pontos. Na tabela 1 abaixo se encontram os resultados obtidos.

Problema	BFGS		Gauss-Newton	
Pontos	Iterações	Valor de Função	Iterações	Valor de Função
100	43	$2,9636 \cdot 10^{-05}$	23	$6,8409 \cdot 10^{-24}$
300	49	$4,1078 \cdot 10^{-05}$	29	$7,6345 \cdot 10^{-23}$
500	44	$1.5676 \cdot 10^{-04}$	24	$1,4538 \cdot 10^{-22}$

Tabela 1: Resultado dos Testes Numéricos

3 Conclusões

Ressalta-se que, enquanto o método BFGS possui garantia de convergência global, o método Gauss-Newton possui garantia de convergência local somente. Apesar disso, o método BFGS mostrou resultados inferiores ao método Gauss-Newton, o que leva-se a ter como perspectivas futuras deste trabalho consolidar o estudo com uma aplicação do Problema da Geometria de Distâncias com dados reais.

Referências

- [1] R. S. Lima, Reconstrução e classificação de estruturas espaciais via otimização contínua: ênfase em proteínas. Tese de Doutorado, Unicamp, 2012.
- [2] A. Mucherino, C. Lavor, L. Liberti, and N. Maculan. *Distance geometry: theory, methods, and applications*. Springer, New York, 2013.
- [3] A. A. Ribeiro, and E. W. Karas. Otimização contínua: aspectos teóricos e computacionais. Cengage, São Paulo, 2013.

³https://www.mathworks.com/products/matlab.html