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Abstract— Cascading failures are very disruptive events that can damage critical infrastructure such as electri-
cal and telecommunication networks. They start with a single-point failure and spread fast through the networks,
sometimes causing the collapse of the whole system. We study and classify three containment strategies for cas-
cading failures. Additionally, we propose a simple dynamic model for cascading failures in scale-free networks
considering random failures and targeted attack scenarios. Our results allowed us to mathematically describe
the behavior of the process and to test three strategies to protect the network against the cascade.
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1 Introduction

Cascading failures (CFs) are a severe problem in
systems like power grids, telecommunications sys-
tems and other critical infrastructure networks.
General solutions to this problem are not available
and thus more research is still required. Such sort
of investigation is mainly based in mathematical
models, since it is not possible to execute trials
in the real-world without incurring the high risk
of injuries, damages, and several other prejudicial
effects.

Scale-free Networks (SFNs) (i.e. networks
that follow a power-law degree distribution) are a
well suited representation of a range of systems in
several distinct fields such as biology, chemistry,
physics and technology. For this reason, SFNs
have been the subject of intense research efforts
and there are many models to generate their en-
sembles.

In this work, the SFN Barabasi-Albert model
(Barabási and Albert, 1999) was chosen to gen-
erate the network topology. A simple cascade
spreading model (SCSM) was used to describe the
failure process across the network. The SCSM
is a probabilistic model that acquires information
about node degrees in order to spread the failure.

To investigate the cascading process, we gen-
erated a set of SFNs realizations and these en-
sembles were used to simulate the propagation
of the failure. Once created, the network is no
longer modified: nodes and links are not added
or removed. The SCSM defines the behavior of
the failure in the following way: if a node downs,
then the failure propagates to the neighbors of this
node according to a global parameter of vulnera-
bility applied on a node-degree basis. A failed
node is not repaired and remains dead for the rest
of the simulation. As the topology of the network
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is never destroyed or changed, the metric used to
assess the spreading of the cascade and the effi-
cacy of the containment approaches is the number
of survivor nodes.

Two simulations scenarios were addressed in
this work: 1) accidental failures, where the nodes
fail at random, and 2) hub (or targeted) attacks,
where an external malicious agent chooses the
most connected node to down. It is well known
that SFNs are more resilient to random problems
than to hub attacks and the results we have ob-
tained corroborate this fact. The main result of
this work is the study and classification of three
containment strategies for cascading failures, and
the analytical modeling of the cascade itself. From
a mathematical perspective, we noted an interest-
ing similarity between the behavior of the model
for both random failures and targeted attack sce-
narios.

The remainder of this paper is organized as
follows: Section 2 describes the main concepts
and the computational model. In Section 3 we
review recent related work; Section 4 shows the
main aspects of the simulation framework and the
results. Finally, in Section 5 we present our main
conclusions.

2 Computation Model

The cascading model employed in this work is
the one based on the work of Lewis (Lewis, 2006)
and embodied by the Critical Infrastructure Pro-
tection - Attacker Defender (AD) software, which
was also adopted as a simulation tool in this work
(Lewis, 2013).

We consider a scale-free network subject to
malicious attacks and modeled as a directed graph
G(V,E) defined by the sets V and E, where V is a
finite set of vertices and E a finite set of edges. An
edge eij connects node i with node j. A cascade
can be contained by specific strategies or contain-
ment mechanisms. Attacks can be random or di-
rected to some topological features of the network.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 1, N. 1, 2013.

DOI: 10.5540/03.2013.001.01.0182 010182-1 © 2013 SBMAC

http://dx.doi.org/105540/03.2013.001.01.0181
http://dx.doi.org/10.5540/03.2013.001.01.0182


Each node has a vulnerability v, which measures
the probability of that node spreading the failure
to other elements. Following an attack, a number
of nodes are deemed to be survival nodes. The re-
maining nodes are dead nodes, i.e. they have lost
their processing capacity. We assume that the at-
tackers know the topology of the network.

The network is subject to a disruptive pro-
cess characterized by an initial fail in a single
point somewhere in the network that scatters to
neighbors and starts a number of new cycles of
fail and spreading. Such process it also known
as avalanche and it is found in several domains.
From a social perspective, rumor dispersion and
collective opinion changes can be studied as CFs.
The spreading of diseases in a population, infor-
mation in a system, or malicious pieces of software
in a computer network can be traced by CFs tem-
plates (Lewis, 2006) (Lewis, 2009).

All the nodes have a fixed processing capac-
ity C (equation (1)). The capacity of a node is
a measure of its ability to handle the traffic load,
proportional to its initial computational load. The
Capacity is allocated based on the following equa-
tion:

CA(i) =

(
1 + α

Bi
λND + λ

)
Li (1)

where α is the tolerance factor, Li is the load on
the node, λ is the average traffic generation rate,
N is the network size, and D is the average size
of the minimum path.

Each node j in the network has a capacity
threshold, which is the maximum flow that the
edge can transmit. Since the node capacity on
real-life networks is generally limited by cost, it is
natural to assume (for simplicity) that the capac-
ity Cj of the node j is proportional to its initial
load: Cj = T * Lj , j =1,2, 3,...N, where constant
T (≥ 1) is the tolerance parameter that describes
the network tolerance. As each node has a lim-
ited capacity to handle the load, if L + ∆Lj >
C for node j, then node j crashes and it further
induces the redistribution of the additional load -
what may lead other nodes to a breakdown.

In addition, the following parameters are ad-
dressed in this work:

• Betweenness centrality of a node: The be-
tweenness is a centrality measure of a vertex
within a graph. The betweeness of a node is
defined as:

Bi =
∑

j,lεN,j 6=l

njl(i)

njl
(2)

where njl is the total number of shortest
paths from node j to l and njl(i) is the num-
ber of those paths that pass through i.

• Local Cluster Coefficient: This is a measure

of degree to which nodes tend to cluster to-
gether. It is given by:

Ci =
2|ejk|

ki(ki − 1)
: vj , vk ε Ni, ejk ε E (3)

and the average cluster coefficient is given by:

C =
1

n

n∑
i=1

Ci (4)

• The spectral radius r(G): The spectral ra-
dius is measured from the adjacency matrix
of a graph. It is the largest non-trivial eigen-
value of det[A(G)-λI]=0, where A is the ad-
jacency matrix and I is the identity matrix.
The eigenvalues are the diagonals (i.e. λ1, λ2,
λ3, .... λn) of λI.

We now present an overview of recent work
on cascading failures in scale-free networks.

3 Related Work

Sun et al. have proposed the strategic allocation
of capacity (amount of traffic allowed by a node) in
the nodes of a network, to gain robustness and re-
duce the size of a cascading failure in the network
(Sun et al., 2008). Wu et al. have also consid-
ered node capacity in their work. They simulated
the CFs in scale-free networks with community
structure, in which local and global level obey the
power-laws. They have focused on the study of
the cascade at different removal strategies to un-
derstand the influence of the avalanches in such
networks. These results suggest that modularity
and large coefficients of reserve capacity are nec-
essary to avoid CFs in community structures (Wu
et al., 2006).

Zhao and Xu have showed how to increase the
robustness of a network adding new links between
the nodes of low degree. They noted that because
of the loop formed between these nodes, the net-
work maintains its operation even after failure of
a node of high degree (Zhao and Xu, 2009).

In this work we simulate, combine, compare
and rank these previous approaches, i.e. the ad-
dition of links and capacity, under the model and
context described in Sections 2 and 4 respectively.

4 Simulation

The goal of this simulation is to assess the ef-
fectiveness of a set of defense (i.e. containment)
strategies against network attacks. The simula-
tion model is illustrated in Fig. 1. We systemat-
ically expose the network to different types of at-
tacks. The performance metric we elect to assess
the the containment approach is the percentage of
survival nodes S resulting from an attack. Clearly,
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the larger the number of survival nodes, the more
successful is the strategy under consideration.

Regarding the node-selection policy, our sim-
ulations consider two types of attacks: 1) Random
attacks, where a random network node (with a low
degree) is selected as the target; 2) Hub attacks,
where only nodes with the highest degrees (i.e.
hubs) are targeted instead. In any case, once a
node is chosen it is subject to the attack and the
failure spreads across the network according to the
vulnerability v of the affected nodes.

Two sets of simulations were considered:

• Simulation 1: The following network con-
tainment approaches were evaluated in terms
of the percentage number (%) of survival
nodes (S): 1) No containment mechanisms,
2) Increasing the number of links between
nodes with a lower degree, 3) Increasing the
node capacity and 4) Combined approach,
where we increase the number of links and
the node capacity simultaneously. Networks
with various sizes (i.e. 10,20..100 nodes)
were subject to attacks and examined. We
considered a fixed vulnerability for all nodes
(v = 0.5).

• Simulation 2: No containment approaches
were in place. Instead, for each type
of attack (i.e. hub or random), we per-
formed simulations measuring the number
of survival nodes while varying the size of
the network from 10 to 1000 nodes (i.e.
10,20,70,100,200,500,1000). Additionally, for
each network size, we varied the node vulner-
ability from 0.1 to 1. For example, if a node
affected by the failure has four connections
and its vulnerability is 0.5, the fault is trans-
mitted to two connections, meaning that two
adjacent nodes are affected.

attack policy

[ random, hub]

Complex Network

[Scale Free BA Model]

NETWORK 

ATTACKS

CONTAINMENT APPROACHES

    1 - no strategy

    2 - increase # links

    3 - increase node capacity

    4 - increase #links & capacity

PARAMETER

1 - number of nodes Simulation 1

PARAMETERS

1 - network size n 

2 - vulnerability v 
Simulation 2

NO CONTAINMENT APPROACHES

NUMBER OF

SURVIVAL

NODES (S)

( Performance

     Metric )

Figure 1: Simulation model.

We now turn to the analysis of the results.

4.1 Results: Classification of Containment
Strategies

4.1.1 Simulation 1

Figs. 2 and 3 illustrate the percentage of sur-
vival nodes S as a function of the number of net-
work nodes for each strategy employed (simula-
tion 1). Based on these results, we can rank the
four containment approaches according to the se-
lected performance criteria (i.e percentage of sur-
vival nodes S) as follows:

Figure 2: Percentage of Survival Nodes for Hub
Attacks (simulation 1)

Figure 3: Percentage of Survival Nodes for Ran-
dom Attacks (simulation 1)

1. Increase in network capacity. By far this is
the best approach of all alternatives consid-
ered, since it provides the largest number of
survival nodes for all types of attacks.

2. Combined approach. The simultaneous ad-
dition of links and capacity in the network
comes as a second alternative approach, i.e.
whereas it increases the number of survival
nodes in comparison with the no-containment
strategy, it does not outperform the exclusive
increase in network capacity.

3. No containment strategy. Simply leaving the
network as it is, i.e. not changing the number
of links or capacity, does not improve on the
results achieved with the alternatives above.
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However, it does present better results than
the increase in the number of links.

4. Increase in the number of new links. This
strategy is outperformed by the previous one,
since it reduces the number of survivors in
all scenarios examined. This may be a con-
sequence of increased spectral radius of the
networks after the addition of new links. In
general, the increase of the spectral radius has
implied in a reduction of the robustness of the
network, and thus an increase in their vulner-
ability to attacks. More connections enhance
the persistence of the spreading failure, which
cross the network epidemically with one rate
of infection.

Regarding the node selection policy, it is clear
that random attacks yield a larger percentage of
unaffected nodes (in all sizes) compared with hub
attacks. This is due to the random nature of the
attack, which affects a smaller portion of the net-
work. Random attacks also present a relatively
smoother decrease in the number of survivor nodes
compared to the attack on hubs, which increase
the likelihood of spreading the failure.

In addition to the measurement of survival
nodes, we have also collected information on the
structural impact caused by the addition of new
links (Table 1):

Table 1: Simulation 1: Structural Impact by the
addition of links (B=before, A=after)
N Links Betweeness Cluster Spectral

Coefficient Radius
– B A B A B A B A
10 17 18 21 18.5 0,46 0,40 3,91 4,04
20 37 42 37 62 0,50 0,31 4,92 5,16
30 55 61 57 104 0,28 0,19 4,94 5,10
40 76 87 82 148 0,33 0,26 5,92 6,11
50 96 105 44 109,5 0,06 0,06 5,53 5,62
60 117 135 116 345 0,11 0,08 6,01 6,14
70 135 152 198 310 0,10 0,05 6,27 6,41
80 157 176 201 435 0,10 0,07 6,28 6,41
90 176 196 190 368 0,07 0,06 6,61 6,73
100 197 223 200 376 0,18 0,13 7,1 7,25

• Betweenness: The maximum centrality in-
creases in all cases, due to the increase of the
number of possible paths between nodes. The
exception is for the network of 10 nodes, due
to the addition of one single link.

• Cluster Coefficient: The value of the cluster
coefficient reduced in all networks subject to
the addition of links. As mentioned in Section
2, this measure indicates how grouped are the
neighbors for each node.

• Spectral Radius: The spectral radius in-
creases with the addition of new links in
all cases. This means a reduction in the

network’s robustness, and therefore an in-
crease in network vulnerability. More connec-
tions imply in an increase of the likelihood of
spreading the fault epidemically.

4.1.2 Simulation 2

Fig. 4 shows the percentage of survivor nodes
as functions of the vulnerability, for random and
hub attacks. Notice that the random attacks are
less damaging to the network than the hub at-
tacks, as they leave the network with a larger
number of survival nodes. It becomes clear from
the consequence graphs the impact of the vulner-
ability on the network, where it is shown that
any value larger than 0.6 imply a quite small per-
centage of survival nodes. This is due to the in-
creased spreading of the failure, which strength-
ens the cascading effect. It is also worth pointing
out that the hub attacks affect almost all the net-
work (resulting in no survival nodes), whereas the
random attacks leave some nodes intact. These
nodes survived probably because they were com-
pletely isolated from the rest of the network, i.e.
their neighboring nodes were downed before the
failures could propagate any further and eventu-
ally reach them.

4.2 Results: Modeling the Behavior of the Cas-
cading Failure

Finding the functions that define the cascade is
crucial for understanding, forecasting and analyz-
ing their behavior. For the analysis of the afore-
mentioned cascade, we observed the graphs in log-
arithmic scale (Fig. 4), which allowed us to find
an equation that models them. We considered the
possibility of obtaining this equation using an ex-
ponential function. However, each type of failure
requires a model of exponential function that fits
the curve.

An inspection of the graphs of the survivor
nodes (log scale) with the vulnerability suggests
a simple mathematical model to describe the be-
havior of survival nodes. For the attacks on hub
nodes, we propose the following model for the
number of survival nodes S:

S(v)hub = a
(

1− ebv
2
)

(5)

and for the failures caused by random attacks we
use:

S(v)random = a
(

1− ebv
c
)

(6)

where a, b and c are parameters to be determined
as a function of both the size of the network and
the type of attack.

In order to find the values of the parameters
a, b and c, we have fitted the simulation results
with our models using a least-squares algorithm.
The results are displayed in Tables 2 and 3 for
each type of attack.
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Figure 4: Percentage of survivors (top panels) and consequence (bottom panels) as functions of the
vulnerability for random (left) and hub (right) attacks for different number of network nodes (simulation
2).

Table 2: Model parameters for Hub attacks. In
this case c = 2.
Nodes parameter a parameter b

10 4.45141 1.17071
20 4.55630 1.18756
70 4.62180 1.27201
100 4.63104 1.31698
200 4.65923 1.33271
500 4,65369 1.35289
1000 4.65175 1.35710

Table 3: Model parameters for Random attacks.
Nodes parameter a parameter b parameter c

10 4.44183 1.17263 2.51885
20 4.53832 1.17263 2.52544
70 4.61326 1.26296 2.60895
100 4.61499 1.25503 2.59426
200 4.62226 1.31230 2.70485
500 4.64025 1.14506 2.51106
1000 4.63083 1.25573 2.65949

The curves of the original failure and the
curves of the exponential function were plotted on
the same graph: in Figs. 5 and 6 we show the fit-
ting of the survivability curve to the data points,
considering 100 nodes under random and hub at-
tacks respectively. The circles represent the simu-
lations with the AttackerDefender (Lewis, 2006)
and the line is the fit with our model. The results
are very similar when considering other number of
network nodes.

Figs. 7 and 8 illustrate the curve fitting for
the parameter Consequence (C, where C = 100

Figure 5: Percentage of survivors as a function of
the vulnerability for random attacks.

- S). The failure has a behavior that is close to
the exponential function parameterized with vari-
able values reasonable for each failure scenario and
each network size.

One interesting result is that the values of the
parameters a and b are approximately indepen-
dent of the number of nodes and they are about
the same for both Hub and Random attacks pro-
vided c ∼ 2.5 for the Random case. This result
makes the simple model even more general for the
prediction of the survivors upon cascading fail-
ures.

Analyzing the attack on the hubs, where we
plot the nodes in the graph versus vulnerabilities,
it is observed that as the vulnerability and likeli-
hood of spreading increases, the percentage of sur-
vivors tends to be equal for all sizes of networks.

The results for random failures can be com-
pared to the results for hub attacks: as expected,
the number of survivors is always larger in ran-
dom failures than the number of survivors in hub
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Figure 6: Percentage of survivors as a function of
the vulnerability for hub attacks.

Figure 7: Percentage consequence as a function of
the vulnerability for random attacks.

(i.e. target) failures, for all network sizes. This
is explained by the fact that hub attacks have the
ability to reach more nodes, since the hubs have
more connections.

5 Summary and Conclusions

The understanding of the behavior of failures in
a scale-free complex network that is subject to in-
tentional attacks is critical to allow for prepared-
ness in face of real-world attacks.

In this work we have analyzed the impact of
both random and hub attacks on scale-free net-
works subject to cascading failures. In addition,
we have also mathematically modeled the behav-
ior of the cascade and observed the effectiveness
of defensive strategies against these attacks.

This work also paves the way for future re-
search on complex networks in the presence of fail-
ures. In particular, an interesting proposal consid-
ers the analysis of other containment strategies as
well as other parameters in the model, such as the
cost function of resources (nodes and links), and
the propagation speed of faults across the network.

Although we have primarily considered inten-
tional, malicious attacks on the network infras-
tructure, we believe that the results presented in
this work are by far more general and can be used
to analyze and describe other scenarios such as the
behavior of regular failures in complex networks.
These results may be helpful to protect real-life
networks and avoid cascading-failure-induced dis-

Figure 8: Percentage consequence as a function
of the vulnerability for hub attacks and different
number of network nodes.

asters.
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