Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Jogo da Vida com Probabilidades

Victor Vinícius Franca Silva¹ Jeneson Medeiros de Aquino Sales² Tiago Mateus Pereira Gonçalves³ Matheus da Silva Menezes⁴ Ivan Mezzomo⁵ Centro de Ciências Exatas e Naturais, UFERSA, Mossoró, RN

Proposto por John Conway [2], o jogo da vida é um exemplo de jogo que não possui jogadores e que é jogado de forma bi-dimensional numa matriz com suas células nas respectivas linhas e colunas. Cada célula tem somente dois estados possíveis durante o jogo, sendo eles o viva, com valor igual a um, ou morto, com valor igual a zero na matriz [3]. A teoria é que a célula viva necessita de outras células também vivas para sobreviver e procriar, mas caso haja um excesso de células vivas ocorre a morte das mesmas devido à escassez de alimento. As regras definidas são aplicadas a cada nova "geração". Assim, a partir de uma imagem em um tabuleiro definida pelo jogador, percebem-se mudanças muitas vezes inesperadas e belas a cada nova geração, variando de padrões fixos a caóticos. As células vivem numa matriz e a cada geração são observadas as seguintes regras [1]:

- Reprodução: Um ser vivo nasce numa célula vazia se essa célula vazia tiver exatamente três seres vivos vizinhos.
- 2. Sobrevivência: Um ser vivo que tenha 2 ou 3 vizinhos sobrevive.
- 3. Morte de fome: Um ser vivo com 4 ou mais vizinhos morre porque fica sem comida.
- 4. Solidão: Um ser vivo sem vizinhos ou com um vizinho, morre de solidão.

Foi feita a implementação do jogo da vida na linguagem C++, considerando um tabuleiro 20 × 20, verificando a solução após 2, 5 e 10 gerações. Em seguida, considerou-se 99% e 98% de chances de que as regras ocorreram em cada célula. Foram executadas vinte iterações para cada caso, comparando com a formulação tradicional (sem probabilidades) relatados na Tabela 1, onde o símbolo ✔ indica que houve coincidência entre a formulação tradicional e o probabilistico na iteração, enquanto o símbolo ★ indica resultado divergente. Na figura 1 apresenta-se um dos casos divergentes da solução esperada com fins de ilustrar o quão imprevisíveis os resultados podem ser. Na figura, os espaços escuros

¹victorovinicius@gmail.com

²jenesonsales@gmail.com

³tiagomateuspg@gmail.com

⁴matheus@ufersa.edu.br

⁵imezzomo@ufersa.edu.br

equivalem a célula viva, e os espaços em branco a célula morta. O computador utilizado possui processador Intel Core i5, 4GB de RAM e sistema operacional Mint 17.3.

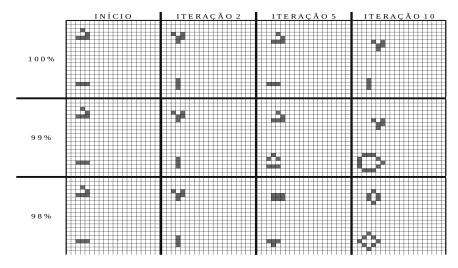


Figura 1: Exemplos de resultados com regras originais e com probabilidade.

Tabela 1: Resultados das simulações realizadas																				
99%	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
It2	~	~	~	~	~	~	×	~	~	~	~	~	~	×	~	~	~	~	~	×
It5	~	~	×	×	×	×	×	~	×	~	×	×	×	×	✓	~	×	×	×	×
It10	~	~	×	×	×	×	×	×	×	✓	×	×	×	×	~	~	×	×	×	×
98%	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
It2	×	×	~	~	~	~	V	~	~	×	×	~	~	~	~	~	~	~	~	×
It5	×	×	~	~	×	×	×	~	~	×	×	×	~	×	×	×	~	×	×	×
It10	×	×	×	×	×	×	×	~	~	×	×	×	×	×	×	×	×	×	×	×

A partir dos resultados podemos observar a natureza caótica do jogo da vida, que é bastante sensível às condições iniciais. Pequenas perturbações no padrão de células vivas e mortas ocasiona um padrão bem diferente do previsto na sua forma clássica. Os dados experimentais permitem inferir que para as condições testadas, até a segunda iteração tivemos uma boa margem de coincidência. Contudo, com o passar das iterações, verificase que passamos a ter uma divergência em quase todos os casos. Na décima iteração praticamente não temos mais coincidência entre os cenários.

Referências

- [1] M. Gardner. Mathematical games: The fantastic combinations of John Conway's new solitaire game of Life. Scientific American. 223: 120-123. 1970.
- [2] E. R. Berlerkamp, J. H. Conway, R. K. Guy MWinning way for your mathematical plays. 2 ed., Massachusetts: A. K. Peters, 2001.
- [3] M. C. Martins. *John Conway e o seu Jogo da Vida*. Correio dos Açores, Açores, p.9, 17 de Set. de 2015. Acesso em 27 de março de 2017, 23h.