Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Um Resultado sobre Funções Menusáveis Limitadas em \mathcal{L}^p

Michele Martins Lopes¹

Instituto de Matemática, Estatística e Computação Científica, Unicamp, Campinas, SP Angela Leite Moreno²

Departamento de Matemática, Instituto de Ciências Exatas, UNIFAL-MG, Alfenas, MG

1 Introdução

Neste trabalho, primeiramente apresentamos as definições de espaços \mathcal{L}^1 e \mathcal{L}^p , mostrando que estamos trabalhando em um espaço vetorial. Em seguida vemos três importantes desigualdades que são necessárias para demonstrar um teorema que mostra que \mathcal{L}^p é espaço vetorial normado, com uma norma específica, que é finita. Definimos, com isso, uma métrica d_p , que em \mathcal{L}^p determina um espaço métrico completo. Por fim, esse teorema é usado para demonstrar um resultado fundamental para esse estudo. Com ele, realizamos uma aplicação: o conjunto das funções mensuráveis limitadas é denso em \mathcal{L}^p .

2 Os Espaços \mathcal{L}^1 e \mathcal{L}^p

Suponhamos que (X, \mathcal{A}, μ) seja um espaço de medida. Seja $L^1(X, \mu)$, e considere a seguinte relação: $f \sim g \leftrightarrow f = g$, quase sempre. Assim, $f \sim g$ se existir $A \in \mathcal{A}$ tal que $\mu(A) = 0$ e f(x) = g(x), para todo $x \notin A$. Temos que \sim é uma relação de equivalência sobre $L^1(X, \mu)$. Além disso, podemos definir a seguinte norma sobre $\mathcal{L}^1(X, \mu)$:

$$||[f]|| := \int_X |f| \ d\mu,$$

que denotaremos por $\mathcal{L}^1(X,\mu) := L^1(X,\mu)|_{\sim}$. Ainda, por convenção, denotaremos [f] = f. E esta definição de norma está bem definida.

Definição 2.1. Seja $p \in [1, \infty)$. Definamos $\mathcal{L}^p(X, \mu)$ o seguinte conjunto

$$\mathcal{L}^{p}\left(X,\mu\right)=\left\{ f \; mensur\'{a}vel: \int_{X}|f|^{p}d\mu<\infty\right\}.$$

 $E \text{ mais, } \mathcal{L}^p(X,\mu)|_{\sim} := L^p(X,\mu).$

Teorema 2.1. $\mathcal{L}^{p}(X,\mu)$ é um espaço vetorial.

Lema 2.1 (Desigualdade de Young (ou Desigualdade Elementar)). Suponhamos que a, b, p e q sejam números reais positivos e $\frac{1}{p} + \frac{1}{q} = 1$, então

 $^{^1}$ mi_martins22@hotmail.com

 $^{^2} aleitemoreno@gmail.com\\$

2

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Lema 2.2 (Desigualdade de Hölder). Sejam $p, q \in \mathbb{R}$ tais que $\frac{1}{p} + \frac{1}{q} = 1$. Considere $f \in \mathcal{L}^p(X, \mu)$ e $g \in \mathcal{L}^q(X, \mu)$, então $f \cdot g \in \mathcal{L}^1(X, \mu)$ e

$$\int_{X} |f \cdot g| d\mu \le ||f||_{p} \cdot ||g||_{q}$$

Lema 2.3 (Desigualdade de Minkowsky). Sejam $f,g\in\mathcal{L}^{p}\left(X,\mu\right),\ ent\tilde{ao}$

$$||f + g||_p \le ||f||_p + ||g||_p$$
.

Teorema 2.2. $\left(\mathcal{L}^{p}\left(X,\mu\right),\left\|\cdot\right\|_{p}\right)$ é um espaço vetorial normado com a norma dada por

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}.$$

Definição 2.2. Suponhamos que (X, \mathcal{A}, μ) seja um espaço de medida e que $\mathcal{L}^p(X, \mu)$, com $p \in (1, \infty)$. Sobre (X, \mathcal{A}, μ) temos a norma

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}} < \infty.$$

Definamos, para quaisquer $f, g \in \mathcal{L}^p(X, \mu)$, que

$$d_p(f,g) = ||f - g||_n$$
.

Teorema 2.3. $(\mathcal{L}^p(X,\mu),d_p)$ é um espaço métrico completo.

Teorema 2.4. Suponhamos que $p \in [1, \infty)$ e que $\varepsilon > 0$. Se $f \in \mathcal{L}^p(X, \mu)$ então existe uma função simples ψ tal que

$$|\psi| \le f$$
 e $||f - \psi||_p < \varepsilon$.

Exemplo 2.1. Se $p \in [1, +\infty)$ então o conjunto das funções mensuráveis limitadas é denso em $\mathcal{L}^q(X, \mu)$.

Com efeito, dada $f \in \mathcal{L}^q(X,\mu)$ e fixado $\varepsilon > 0$, pelo Teorema 2.4, existe uma função simples ψ tal que

$$|\psi| \le f$$
 e $||f - \psi||_p < \varepsilon$,

e, como toda função simples é $\mathcal{L}^q(X,\mu)$, o resultado segue.

Com isso, mostramos que o conjunto das funções mensuráveis limitadas é denso em \mathcal{L}^p .

Agradecimentos

Agradecemos à FAPEMIG e à UNIFAL-MG.

Referências

[1] L. A. Medeiros, E. A. Mello. A Integral de Lebesgue. 6 ed. UFRJ, Rio de Janeiro, 2008.